Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(9): 5134-5144, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36823697

RESUMO

Afterglow luminescence (long persistent luminescence) holds great potential for nonbackground molecular imaging. However, current afterglow probes are mainly nanoparticles, and afterglow imaging systems based on organic small molecules are still lacking and have rarely been reported. Moreover, the lack of reactive sites and a universal molecular scaffold makes it difficult to design activatable afterglow probes. To address these issues, this study reports a novel kind of hemicyanine-based molecule scaffolds with stimuli-responsive afterglow luminescence, which is dependent on an intramolecular cascade photoreaction between 1O2 and the afterglow molecule to store the photoenergy for delayed luminescence after light cessation. As a proof of concept, three modular activatable molecular afterglow probes (MAPs) with a "four-in-one" molecular design by integrating a stimuli-responsive unit, 1O2-generating unit, 1O2-capturing unit, and luminescent unit into one probe are customized for quantification and imaging of targets including pH, superoxide anions, and aminopeptidase. Notably, MAPs show higher sensitivity in afterglow imaging than in fluorescence imaging because the responsive unit simultaneously controls the initiation of fluorescence (S1 to S0) and 1O2 generation (S1 to T1). Finally, MAPs are applied for high-contrast afterglow imaging of drug-induced hepatotoxicity, which is poorly evaluated in clinics and drug discovery. By reporting the sequential occurrence of oxidative stress and upregulation of aminopeptidase, such activatable afterglow probes allow noninvasive imaging of hepatotoxicity earlier than the serological and histology manifestation, indicating their promise for early diagnosis of hepatotoxicity.


Assuntos
Luminescência , Nanopartículas , Nanopartículas/química , Imagem Molecular/métodos , Imagem Óptica
2.
Angew Chem Int Ed Engl ; 62(17): e202218613, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36855015

RESUMO

Probes allowing high-contrast discrimination of cancer cells and effective retention are powerful tools for the early diagnosis and treatment of cancer. However, conventional small-molecule probes often show limited performance in both aspects. Herein, we report an ingenious molecular engineering strategy for tuning the cellular uptake and retention of rhodamine dyes. Introduction of polar aminoethyl leads to the increased brightness and reduced cellular uptake of dyes, and this change can be reversed by amino acetylation. Moreover, these modifications allow cancer cells to take up more dyes than normal cells (16-fold) through active transport. Specifically, we further improve the signal contrast (56-fold) between cancer and normal cells by constructing activatable probes and confirm that the released fluorophore can remain in cancer cells with extended time, enabling long-term and specific tumor imaging.


Assuntos
Neoplasias , Humanos , Linhagem Celular Tumoral , Bioengenharia/métodos , Rodaminas/análise , Rodaminas/química , Rodaminas/metabolismo , Animais , Camundongos
3.
Nat Commun ; 14(1): 1843, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012267

RESUMO

J-aggregation, an effective strategy to extend wavelength, has been considered as a promising method for constructing NIR-II fluorophores. However, due to weak intermolecular interactions, conventional J-aggregates are easily decomposed into monomers in the biological environment. Although adding external carriers could help conventional J-aggregates stabilize, such methods still suffer from high-concentration dependence and are unsuitable for activatable probes design. Besides, these carriers-assisted nanoparticles are risky of disassembly in lipophilic environment. Herein, by fusing the precipitated dye (HPQ) which has orderly self-assembly structure, onto simple hemi-cyanine conjugated system, we construct a series of activatable, high-stability NIR-II-J-aggregates which overcome conventional J-aggregates carrier's dependence and could in situ self-assembly in vivo. Further, we employ the NIR-II-J-aggregates probe HPQ-Zzh-B to achieve the long-term in situ imaging of tumor and precise tumor resection by NIR-II imaging navigation for reducing lung metastasis. We believe this strategy will advance the development of controllable NIR-II-J-aggregates and precise bioimaging in vivo.


Assuntos
Nanopartículas , Cirurgia Assistida por Computador , Corantes Fluorescentes/química , Nanopartículas/química , Imagem Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA