Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Med Mycol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877671

RESUMO

Candida auris is an emerging fungal pathogen associated with multi-drug resistance rates and widespread outbreaks in hospitals and health care units worldwide. Sequencing studies have revealed that different clonal lineages of the fungus seem to be prevalent among distinct geographical sites. The first case of C. auris in Northern Greece was reported in Thessaloniki in October 2022, almost two years after the first isolation in Greece (Athens 2019). The Mycology Laboratory of the Medical School of Aristotle University of Thessaloniki stands as the reference laboratory for fungal diseases in Northern Greece and a meticulous search for the yeast, in plenty of suspicious samples, has been run since 2019 in the Lab as well as a retrospective analysis of all its yeasts' collection, back to 2008, with negative results for the presence of C. auris. Here, are presented the findings concerning the outbreak and surveillance of C. auris in Northern Greece, mainly the region of Thessaloniki and the broader area of Macedonia, from October 2022 until August 2023. The isolates from Northern Greece continue to fall in Clade I and present with an almost equal and stable sensitivity profile until now.


The study concerns the outbreak of Candida auris in Northern Greece since October 2022 and the effort for surveillance and epidemiological monitoring. All isolates continue to fall in Clade I and present with an almost equal and stable sensitivity profile till now.

2.
Magn Reson Chem ; 61(12): 759-769, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37666776

RESUMO

One-dimensional (1D) proton-nuclear magnetic resonance (1 H-NMR) spectroscopy is an established technique for the deconvolution of complex biological sample types via the identification/quantification of small molecules. It is highly reproducible and could be easily automated for small to large-scale bioanalytical, epidemiological, and in general metabolomics studies. However, chemical shift variability is a serious issue that must still be solved in order to fully automate metabolite identification. Herein, we demonstrate a strategy to increase the confidence in assignments and effectively predict the chemical shifts of various NMR signals based upon the simplest form of statistical models (i.e., linear regression). To build these models, we were guided by chemical homology in serum/plasma metabolites classes (i.e., amino acids and carboxylic acids) and similarity between chemical groups such as methyl protons. Our models, built on 940 serum samples and validated in an independent cohort of 1,052 plasma-EDTA spectra, were able to successfully predict the 1 H NMR chemical shifts of 15 metabolites within ~1.5 linewidths (Δv1/2 ) error range on average. This pilot study demonstrates the potential of developing an algorithm for the accurate assignment of 1 H NMR chemical shifts based solely on chemically defined constraints.


Assuntos
Imageamento por Ressonância Magnética , Prótons , Humanos , Projetos Piloto , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Aceleração
3.
Nucleic Acids Res ; 48(21): 11880-11889, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33068411

RESUMO

The study of prions as infectious aggregates dates several decades. From its original formulation, the definition of a prion has progressively changed to the point that many aggregation-prone proteins are now considered bona fide prions. RNA molecules, not included in the original 'protein-only hypothesis', are also being recognized as important factors contributing to the 'prion behaviour', that implies the transmissibility of an aberrant fold. In particular, an association has recently emerged between aggregation and the assembly of prion-like proteins in RNA-rich complexes, associated with both physiological and pathological events. Here, we discuss the historical rising of the concept of prion-like domains, their relation to RNA and their role in protein aggregation. As a paradigmatic example, we present the case study of TDP-43, an RNA-binding prion-like protein associated with amyotrophic lateral sclerosis. Through this example, we demonstrate how the current definition of prions has incorporated quite different concepts making the meaning of the term richer and more stimulating. An important message that emerges from our analysis is the dual role of RNA in protein aggregation, making RNA, that has been considered for many years a 'silent presence' or the 'stone guest' of protein aggregation, an important component of the process.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Príons/genética , Proteína FUS de Ligação a RNA/genética , Proteínas de Ligação a RNA/genética , RNA/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Sítios de Ligação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Humanos , Modelos Moleculares , Príons/química , Príons/metabolismo , Agregados Proteicos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA/química , RNA/metabolismo , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Fatores Associados à Proteína de Ligação a TATA/química , Fatores Associados à Proteína de Ligação a TATA/metabolismo
4.
Phys Chem Chem Phys ; 20(18): 12719-12726, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29697113

RESUMO

Active bioinspired materials are appealing biotechnological targets, and their study is gaining momentum. These materials, which comprise of an inorganic matrix and one or more biomolecules, are extremely variable and therefore may result difficult to characterize in their intimate structure. In this work we have prepared a hydroxyapatite-l-asparaginase composite, with the perspective of using it in acute leukemia treatment. We demonstrate that the use of electron microscopy and powder X-ray diffraction, combined with the atomic-resolution information coming from solid-state NMR, allows us to understand the topology of the material and how the different components interplay to obtain an active composite.


Assuntos
Asparaginase/química , Materiais Biocompatíveis/síntese química , Durapatita/química , Proteínas de Escherichia coli/química , Engenharia de Proteínas , Sequência de Aminoácidos , Asparaginase/genética , Asparaginase/ultraestrutura , Linhagem Celular Tumoral , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestrutura , Humanos , Espectroscopia de Ressonância Magnética , Teste de Materiais , Microscopia Eletrônica de Varredura , Estabilidade Proteica , Propriedades de Superfície , Difração de Raios X
5.
Chemistry ; 22(1): 425-32, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26625942

RESUMO

Among protein immobilization strategies, encapsulation in bioinspired silica is increasingly popular. Encapsulation offers high yields and the solid support is created through a protein-catalyzed polycondensation reaction that occurs under mild conditions. An integrated strategy is reported for the characterization of both the protein and bioinspired silica scaffold generated by the encapsulation of enzymes with an external silica-forming promoter or with the promoter expressed as a fusion to the enzyme. This strategy is applied to the catalytic domain of matrix metalloproteinase 12. Analysis reveals that the structure of the protein encapsulated by either method is not significantly altered with respect to the native form. The structural features of silica obtained by either strategy are also similar, but differ from those obtained by other approaches. In case of the covalently linked R5-enzyme construct, immobilization yields are higher. Encapsulation through a fusion protein, therefore, appears to be the method of choice.


Assuntos
Materiais Biocompatíveis/química , Enzimas Imobilizadas/química , Metaloproteases/química , Silicatos/química , Catálise , Espectroscopia de Ressonância Magnética , Metaloproteases/metabolismo
6.
Aging Cell ; 21(1): e13517, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34939315

RESUMO

Frontotemporal dementia and amyotrophic lateral sclerosis are fatal and incurable neurodegenerative diseases linked to the pathological aggregation of the TDP-43 protein. This is an essential DNA/RNA-binding protein involved in transcription regulation, pre-RNA processing, and RNA transport. Having suitable animal models to study the mechanisms of TDP-43 aggregation is crucial to develop treatments against disease. We have previously demonstrated that the killifish Nothobranchius furzeri offers the advantage of being the shortest-lived vertebrate with a clear aging phenotype. Here, we show that the two N. furzeri paralogs of TDP-43 share high sequence homology with the human protein and recapitulate its cellular and biophysical behavior. During aging, N. furzeri TDP-43 spontaneously forms insoluble intracellular aggregates with amyloid characteristics and colocalizes with stress granules. Our results propose this organism as a valuable new model of TDP-43-related pathologies making it a powerful tool for the study of disease mechanism.


Assuntos
Proteinopatias TDP-43/metabolismo , Animais , Peixes Listrados , Modelos Animais
7.
Front Mol Biosci ; 8: 773234, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35237655

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder associated to deteriorating motor and cognitive functions, and short survival. The disease is caused by neuronal death which results in progressive muscle wasting and weakness, ultimately leading to lethal respiratory failure. The misbehaviour of a specific protein, TDP-43, which aggregates and becomes toxic in ALS patient's neurons, is supposed to be one of the causes. TDP-43 is a DNA/RNA-binding protein involved in several functions related to nucleic acid metabolism. Sequestration of TDP-43 aggregates is a possible therapeutic strategy that could alleviate or block pathology. Here, we describe the selection and characterization of a new intracellular antibody (intrabody) against TDP-43 from a llama nanobody library. The structure of the selected intrabody was predicted in silico and the model was used to suggest mutations that enabled to improve its expression yield, facilitating its experimental validation. We showed how coupling experimental methodologies with in silico design may allow us to obtain an antibody able to recognize the RNA binding regions of TDP-43. Our findings illustrate a strategy for the mitigation of TDP-43 proteinopathy in ALS and provide a potential new tool for diagnostics.

8.
J Phys Chem B ; 121(34): 8094-8101, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28762736

RESUMO

Solid-state NMR is becoming a powerful tool to detect atomic-level structural features of biomolecules even when they are bound to (or trapped in) solid systems that lack long-range three-dimensional order. We here demonstrate that it is possible to probe protein-ligand interactions from a protein-based perspective also when the protein is entrapped in silica, thus translating into biomolecular solid-state NMR all of the considerations that are usually made to understand the chemical nature of the interaction of a protein with its ligands. This work provides a proof of concept that also immobilized enzymes can be used for protein-based NMR protein-ligand interactions for drug discovery.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Dióxido de Silício/química , Anidrase Carbônica II/química , Anidrase Carbônica II/genética , Anidrase Carbônica II/metabolismo , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Ligantes , Ligação Proteica , Conformação Proteica , Proteínas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química
9.
J Med Chem ; 60(21): 9003-9011, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29048889

RESUMO

Oxaliplatin (OXA) is a valuable and largely used cancer drug which induces a serious and intractable neuropathy. The lipoyl-homotaurine derivative (ADM_12) reverts in vivo OXA-induced neuropathy, and it is an effective antagonist of the nociceptive sensor channel TRPA1. Unprecedentedly, this safe analgesic showed a synergy with OXA in vitro and proved to inhibit CA IX, a relevant therapeutic target, clearly interfering with pancreatic cancer cells' aggressiveness.


Assuntos
Anidrase Carbônica IX/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Compostos Organoplatínicos/toxicidade , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Taurina/análogos & derivados , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Inibidores da Anidrase Carbônica/farmacologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Neoplasias/complicações , Neoplasias/patologia , Compostos Organoplatínicos/uso terapêutico , Oxaliplatina , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Canal de Cátion TRPA1/antagonistas & inibidores , Taurina/química , Taurina/farmacologia
10.
Sci Rep ; 6: 27851, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27279168

RESUMO

Proton-detection in solid-state NMR, enabled by high magnetic fields (>18 T) and fast magic angle spinning (>50 kHz), allows for the acquisition of traditional (1)H-(15)N experiments on systems that are too big to be observed in solution. Among those, proteins entrapped in a bioinspired silica matrix are an attractive target that is receiving a large share of attention. We demonstrate that (1)H-detected SSNMR provides a novel approach to the rapid assessment of structural integrity in proteins entrapped in bioinspired silica.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Prótons , Dióxido de Silício/química , Ressonância Magnética Nuclear Biomolecular/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA