Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 28(9): 2033-42, 2008 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-18305238

RESUMO

Acute intermittent hypoxia elicits a form of spinal, brain-derived neurotrophic factor (BDNF)-dependent respiratory plasticity known as phrenic long-term facilitation. Ligands that activate G(s)-protein-coupled receptors, such as the adenosine 2a receptor, mimic the effects of neurotrophins in vitro by transactivating their high-affinity receptor tyrosine kinases, the Trk receptors. Thus, we hypothesized that A2a receptor agonists would elicit phrenic long-term facilitation by mimicking the effects of BDNF on TrkB receptors. Here we demonstrate that spinal A2a receptor agonists transactivate TrkB receptors in the rat cervical spinal cord near phrenic motoneurons, thus inducing long-lasting (hours) phrenic motor facilitation. A2a receptor activation increased phosphorylation and new synthesis of an immature TrkB protein, induced TrkB signaling through Akt, and strengthened synaptic pathways to phrenic motoneurons. RNA interference targeting TrkB mRNA demonstrated that new TrkB protein synthesis is necessary for A2a-induced phrenic motor facilitation. A2a receptor activation also increased breathing in unanesthetized rats, and improved breathing in rats with cervical spinal injuries. Thus, small, highly permeable drugs (such as adenosine receptor agonists) that transactivate TrkB receptors may provide an effective therapeutic strategy in the treatment of patients with ventilatory control disorders, such as obstructive sleep apnea, or respiratory insufficiency after spinal injury or during neurodegenerative diseases.


Assuntos
Neurônios Motores/fisiologia , Nervo Frênico/fisiologia , Receptor A2A de Adenosina/metabolismo , Medula Espinal/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina , Animais , Anti-Hipertensivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Interações Medicamentosas , Ensaio de Imunoadsorção Enzimática/métodos , Masculino , Neurônios Motores/efeitos dos fármacos , Fenetilaminas/farmacologia , Nervo Frênico/efeitos dos fármacos , Pletismografia/métodos , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor trkB/genética , Receptor trkB/metabolismo , Medula Espinal/efeitos dos fármacos , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Xantinas/farmacologia
2.
Cardiovasc Res ; 89(1): 72-8, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20736238

RESUMO

AIMS: glucagon-like peptide 1 (GLP-1) is an incretin hormone released from the gut in response to food intake. Whereas GLP-1 acts in the periphery to inhibit glucagon secretion and stimulate insulin release, it also acts in the central nervous system to mediate autonomic control of feeding, body temperature, and cardiovascular function. Because of its role as an incretin hormone, GLP-1 receptor analogs are used as a treatment for type 2 diabetes. Central or peripheral administration of GLP-1 increases blood pressure and heart rate, possibly by activating brainstem autonomic nuclei and increasing vagus nerve activity. However, the mechanism(s) by which GLP-1 receptor stimulation affects cardiovascular function are unknown. We used the long-lasting GLP-1 receptor agonist Exendin-4 (Ex-4) to test the hypothesis that GLP-1 signalling modulates central parasympathetic control of heart rate. METHODS AND RESULTS: using a telemetry system, we assessed heart rate in mice during central Ex-4 administration. Heart rate was increased by both acute and chronic central Ex-4 administration. Spectral analysis indicated that the high frequency and low frequency powers of heart rate variability were diminished by Ex-4 treatment. Finally, Ex-4 decreased both excitatory glutamatergic and inhibitory glycinergic neurotransmission to preganglionic parasympathetic cardiac vagal neurons. CONCLUSION: these data suggest that central GLP-1 receptor stimulation diminishes parasympathetic modulation of the heart thereby increasing heart rate.


Assuntos
Frequência Cardíaca/fisiologia , Coração/inervação , Receptores de Glucagon/fisiologia , Transmissão Sináptica/fisiologia , Nervo Vago/fisiologia , Animais , Exenatida , Receptor do Peptídeo Semelhante ao Glucagon 1 , Coração/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Masculino , Camundongos , Sistema Nervoso Parassimpático/efeitos dos fármacos , Sistema Nervoso Parassimpático/fisiologia , Peptídeos/administração & dosagem , Peptídeos/farmacologia , Receptores de Glucagon/agonistas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Nervo Vago/efeitos dos fármacos , Peçonhas/administração & dosagem , Peçonhas/farmacologia
3.
Ann N Y Acad Sci ; 1198: 252-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20536940

RESUMO

Plasticity is a fundamental property of the neural system controlling breathing. One frequently studied model of respiratory plasticity is long-term facilitation of phrenic motor output (pLTF) following acute intermittent hypoxia (AIH). pLTF arises from spinal plasticity, increasing respiratory motor output through a mechanism that requires new synthesis of brain-derived neurotrophic factor, activation of its high-affinity receptor, tropomyosin-related kinase B, and extracellular-related kinase mitogen-activated protein kinase signaling in or near phrenic motor neurons. Because intermittent hypoxia induces spinal plasticity, we are exploring the potential to harness repetitive AIH as a means of inducing functional recovery in conditions causing respiratory insufficiency, such as cervical spinal injury. Because repetitive AIH induces phenotypic plasticity in respiratory motor neurons, it may restore respiratory motor function in patients with incomplete spinal injury.


Assuntos
Hipóxia/fisiopatologia , Plasticidade Neuronal/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Vértebras Cervicais/lesões , Ativação Enzimática , Humanos , Hipertensão/etiologia , Deficiências da Aprendizagem/etiologia , Deficiências da Aprendizagem/fisiopatologia , Nervo Frênico/fisiologia , Nervo Frênico/fisiopatologia , Proteína Quinase C/metabolismo , Ratos , Receptores 5-HT2 de Serotonina/fisiologia , Fenômenos Fisiológicos Respiratórios , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/fisiopatologia , Medula Espinal/fisiopatologia
4.
Respir Physiol Neurobiol ; 169(2): 210-7, 2009 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-19651247

RESUMO

Respiratory-related complications are the leading cause of death in spinal cord injury (SCI) patients. Few effective SCI treatments are available after therapeutic interventions are performed in the period shortly after injury (e.g. spine stabilization and prevention of further spinal damage). In this review we explore the capacity to harness endogenous spinal plasticity induced by intermittent hypoxia to optimize function of surviving (spared) neural pathways associated with breathing. Two primary questions are addressed: (1) does intermittent hypoxia induce plasticity in spinal synaptic pathways to respiratory motor neurons following experimental SCI? and (2) can this plasticity improve respiratory function? In normal rats, intermittent hypoxia induces serotonin-dependent plasticity in spinal pathways to respiratory motor neurons. Early experiments suggest that intermittent hypoxia also enhances respiratory motor output in experimental models of cervical SCI (cervical hemisection) and that the capacity to induce functional recovery is greater with longer durations post-injury. Available evidence suggests that intermittent hypoxia-induced spinal plasticity has considerable therapeutic potential to treat respiratory insufficiency following chronic cervical spinal injury.


Assuntos
Hipóxia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Animais , Modelos Animais de Doenças , Humanos , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA