Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mar Drugs ; 19(6)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070821

RESUMO

Air pollution has recently become a subject of increasing concern in many parts of the world. The World Health Organization (WHO) estimated that nearly 4.2 million early deaths are due to exposure to fine particles in polluted air, which causes multiple respiratory diseases. Algae, as a natural product, can be an alternative treatment due to potential biofunctional properties and advantages. This systematic review aims to summarize and evaluate the evidence of metabolites derived from algae as potential anti-inflammatory agents against respiratory disorders induced by atmospheric particulate matter (PM). Databases such as Scopus, Web of Science, and PubMed were systematically searched for relevant published full articles from 2016 to 2020. The main key search terms were limited to "algae", "anti-inflammation", and "air pollutant". The search activity resulted in the retrieval of a total of 36 publications. Nine publications are eligible for inclusion in this systematic review. A total of four brown algae (Ecklonia cava, Ishige okamurae, Sargassum binderi and Sargassum horneri) with phytosterol, polysaccharides and polyphenols were reported in the nine studies. The review sheds light on the pathways of particulate matter travelling into respiratory systems and causing inflammation, and on the mechanisms of actions of algae in inhibiting inflammation. Limitations and future directions are also discussed. More research is needed to investigate the potential of algae as anti-inflammatory agents against PM in in vivo and in vitro experimental models, as well as clinically.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Anti-Inflamatórios/uso terapêutico , Material Particulado/efeitos adversos , Phaeophyceae , Doenças Respiratórias/tratamento farmacológico , Animais , Humanos
2.
Colloids Surf B Biointerfaces ; 241: 114051, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38954935

RESUMO

There has been a surge in effort in the development of various solid nanoparticles as Pickering emulsion stabilizers in the past decades. Regardless, the exploration of stabilizers that simultaneously stabilize and deliver bioactive has been limited. For this, liposomes with amphiphilic nature have been introduced as Pickering emulsion stabilizers but these nano-sized vesicles lack targeting specificity. Therefore in this study, superparamagnetic iron oxide nanoparticles (SPION) encapsulated within liposomes (MLP) were used as Pickering emulsion stabilizers to prepare pH and magnetic-responsive Pickering emulsions. A stable MLP-stabilized Pickering emulsion formulation was established by varying the MLP pH, concentration, and oil loading during the emulsification process. The primary stabilization mechanism of the emulsion under pH variation was identified to be largely associated with the MLP phosphate group deprotonation. When subjected to sequential pH adjustment to imitate the gastrointestinal digestion pH environment, a recovery in Pickering emulsion integrity was observed as the pH changes from acidic to alkaline. By incorporating SPION, the Pickering emulsion can be guided to the targeted site under the influence of a magnetic field without compromising emulsion stability. Overall, the results demonstrated the potential of MLP-stabilized Pickering emulsion as a dual pH- and magnetic-responsive drug delivery carrier with the ability to co-encapsulate hydrophobic and hydrophilic bioactive.

3.
Chem Biol Interact ; 386: 110750, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839513

RESUMO

Hydroxychloroquine (HCQ) is a unique class of medications that has been widely utilized for the treatment of cancer. HCQ plays a dichotomous role by inhibiting autophagy induced by the tumor microenvironment (TME). Preclinical studies support the use of HCQ for anti-cancer therapy, especially in combination with conventional anti-cancer treatments since they sensitize tumor cells to drugs, potentiating the therapeutic activity. However, clinical evidence has suggested poor outcomes for HCQ due to various obstacles, including non-specific distribution, low aqueous solubility and low bioavailability at target sites, transport across tissue barriers, and retinal toxicity. These issues are addressable via the integration of HCQ with nanotechnology to produce HCQ-conjugated nanomedicines. This review aims to discuss the pharmacodynamic, pharmacokinetic and antitumor properties of HCQ. Furthermore, the antitumor performance of the nanoformulated HCQ is also reviewed thoroughly, aiming to serve as a guide for the HCQ-based enhanced treatment of cancers. The nanoencapsulation or nanoconjugation of HCQ with nanoassemblies appears to be a promising method for reducing the toxicity and improving the antitumor efficacy of HCQ.


Assuntos
Hidroxicloroquina , Neoplasias , Humanos , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanotecnologia , Microambiente Tumoral
4.
Biochim Biophys Acta Rev Cancer ; 1877(5): 188779, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35977690

RESUMO

Despite the emergence of various cancer treatments, such as surgery, chemotherapy, radiotherapy, and immunotherapy, their use remains restricted owing to their limited tumor elimination efficacy and side effects. The use of nanoassemblies as delivery systems in nanomedicine for tumor diagnosis and therapy is flourishing. These nanoassemblies can be designed to have various shapes, sizes, and surface charges to meet the requirements of different applications. It is crucial for nanoassemblies to have enhanced delivery of payloads while inducing minimal to no toxicity to healthy tissues. In this review, stimuli-responsive nanoassemblies capable of combating the tumor microenvironment (TME) are discussed. First, various TME characteristics, such as hypoxia, oxidoreduction, adenosine triphosphate (ATP) elevation, and acidic TME, are described. Subsequently, the unique characteristics of the vascular and stromal TME are differentiated, and multiple barriers that have to be overcome are discussed. Furthermore, strategies to overcome these barriers for successful drug delivery to the targeted site are reviewed and summarized. In conclusion, the possible challenges and prospects of using these nanoassemblies for tumor-targeted delivery are discussed. This review aims at inspiring researchers to develop stimuli-responsive nanoassemblies for tumor-targeted delivery for clinical applications.


Assuntos
Nanopartículas , Neoplasias , Trifosfato de Adenosina , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Microambiente Tumoral
5.
Antioxidants (Basel) ; 11(5)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35624777

RESUMO

The importance of cosmetics in our lives is immeasurable. Covering items from daily personal hygienic products to skincare, it has become essential to consumers that the items that they use are safe and effective. Since natural products are from natural sources, and therefore considered "natural" and "green" in the public's eyes, the rise in demand for such products is not surprising. Even so, factoring in the need to remain on trend and innovative, cosmetic companies are on a constant search for new ingredients and inventive new formulations. Based on numerous literature, the seed of Swietenia macrophylla has been shown to possess several potential "cosmetic-worthy" bioproperties, such as skin whitening, photoprotective, antioxidant, antimicrobial, etc. These properties are vital in the cosmetic business, as they ultimately contribute to the "ageless" beauty that many consumers yearn for. Therefore, with further refinement and research, these active phytocompounds may be a great contribution to the cosmetic field in the near future.

6.
Ultrason Sonochem ; 82: 105887, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34954629

RESUMO

Ultrasound (US) demonstrates remarkable potential in synthesising nanomaterials, particularly nanobiomaterials targeted towards biomedical applications. This review briefly introduces existing top-down and bottom-up approaches for nanomaterials synthesis and their corresponding synthesis mechanisms, followed by the expounding of US-driven nanomaterials synthesis. Subsequently, the pros and cons of sono-nanotechnology and its advances in the synthesis of nanobiomaterials are drawn based on recent works. US-synthesised nanobiomaterials have improved properties and performance over conventional synthesis methods and most essentially eliminate the need for harsh and expensive chemicals. The sonoproduction of different classes and types of nanobiomaterials such as metal and superparamagnetic nanoparticles (NPs), lipid- and carbohydrate-based NPs, protein microspheres, microgels and other nanocomposites are broadly categorised based on the physical and/or chemical effects induced by US. This review ends on a good note and recognises US-driven synthesis as a pragmatic solution to satisfy the growing demand for nanobiomaterials, nonetheless some technical challenges are highlighted.


Assuntos
Nanocompostos , Nanopartículas , Materiais Biocompatíveis , Metais , Nanotecnologia
7.
J Control Release ; 345: 231-274, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35306119

RESUMO

Despite its wide establishment over the years, iron oxide nanoparticle (IONP) still draws extensive interest in the biomedical fields due to its biocompatibility, biodegradability, magnetivity and surface tunable properties. IONP has been used for the MRI, magnetic targeting, drug delivery and hyperthermia of various diseases. However, their poor stability, low diagnostic sensitivity and low disease-specificity have resulted in unsatisfying diagnostic and therapeutic outputs. The surface functionalization of IONP with biocompatible and colloidally stable components appears to be promising to improve its circulation and colloidal stability. Importantly, through surface functionalization with designated functional components, IONP-based assemblies with multiple stimuli-responsivity could be formed to achieve an accurate and efficient delivery of IONP to disease sites for an improved disease diagnosis and therapy. In this work, we first described the design of biocompatible and stable IONP assemblies. Further, their stimuli-driven manipulation strategies are reviewed. Next, the utilization of IONP assemblies for disease diagnosis, therapy and imaging-guided therapy are discussed. Then, the potential toxicity of IONPs and their clinical usages are described. Finally, the intrinsic challenges and future outlooks of IONP assemblies are commented. This review provides recent insights into IONP assemblies, which could inspire researchers on the future development of multi-responsive and disease-targetable nanoassemblies for biomedical utilization.


Assuntos
Compostos Férricos , Hipertermia Induzida , Sistemas de Liberação de Medicamentos , Compostos Férricos/uso terapêutico , Nanopartículas Magnéticas de Óxido de Ferro , Magnetismo
8.
Exploration (Beijing) ; 1(2): 20210009, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37323214

RESUMO

Contrast agents can improve the sensitivity and resolution of magnetic resonance imaging (MRI) by accelerating the relaxation times of surrounding water protons. The MRI performances of contrast agents are closely related to their structural characteristics, including size, shape, surface modification, and so on. Recently, dynamically switchable MRI contrast agents that can undergo structural changes and imaging functional activations upon reaching the disease microenvironment have been developed for high performance MRI. This perspective highlights the ingenious design, controllable structural transformation, and tunable imaging property of dynamic MRI contrast agents. Additionally, the current challenges of the dynamic MRI contrast agents for medical diagnosis are discussed. Furthermore, the future integration of high-resolution ultra-high field MRI technology and cutting-edge dynamic MRI contrast agents for non-invasive histopathological level accurate detection of microscopic lesions are commented.

9.
Ultrason Sonochem ; 80: 105805, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34706321

RESUMO

Recent advances in ultrasound (US) have shown its great potential in biomedical applications as diagnostic and therapeutic tools. The coupling of US-assisted drug delivery systems with nanobiomaterials possessing tailor-made functions has been shown to remove the limitations of conventional drug delivery systems. The low-frequency US has significantly enhanced the targeted drug delivery effect and efficacy, reducing limitations posed by conventional treatments such as a limited therapeutic window. The acoustic cavitation effect induced by the US-mediated microbubbles (MBs) has been reported to replace drugs in certain acute diseases such as ischemic stroke. This review briefly discusses the US principles, with particular attention to the recent advancements in drug delivery applications. Furthermore, US-assisted drug delivery coupled with nanobiomaterials to treat different diseases (cancer, neurodegenerative disease, diabetes, thrombosis, and COVID-19) are discussed in detail. Finally, this review covers the future perspectives and challenges on the applications of US-mediated nanobiomaterials.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Sistemas de Liberação de Medicamentos , Microbolhas , Nanoestruturas/uso terapêutico , Ultrassonografia/tendências , COVID-19 , Humanos , Nanopartículas , SARS-CoV-2
10.
Adv Drug Deliv Rev ; 175: 113830, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34139254

RESUMO

Dynamic nanoassembly-based drug delivery system (DNDDS) has evolved from being a mere curiosity to emerging as a promising strategy for high-performance diagnosis and/or therapy of various diseases. However, dynamic nano-bio interaction between DNDDS and biological systems remains poorly understood, which can be critical for precise spatiotemporal and functional control of DNDDS in vivo. To deepen the understanding for fine control over DNDDS, we aim to explore natural systems as the root of inspiration for researchers from various fields. This review highlights ingenious designs, nano-bio interactions, and controllable functionalities of state-of-the-art DNDDS under endogenous or exogenous stimuli, by learning from nature at the molecular, subcellular, and cellular levels. Furthermore, the assembly strategies and response mechanisms of tailor-made DNDDS based on the characteristics of various diseased microenvironments are intensively discussed. Finally, the current challenges and future perspectives of DNDDS are briefly commented.


Assuntos
Sistemas de Liberação de Fármacos por Nanopartículas , Animais , Membrana Celular/metabolismo , DNA/metabolismo , Exossomos/metabolismo , Humanos , Nanopartículas/metabolismo
11.
Nanoscale ; 13(23): 10197-10238, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34027535

RESUMO

Neurodegenerative disorder is an illness involving neural dysfunction/death attributed to complex pathological processes, which eventually lead to the mortality of the host. It is generally recognized through features such as mitochondrial dysfunction, protein aggregation, oxidative stress, metal ions dyshomeostasis, membrane potential change, neuroinflammation and neurotransmitter impairment. The aforementioned neuronal dysregulations result in the formation of a complex neurodegenerative microenvironment (NME), and may interact with each other, hindering the performance of therapeutics for neurodegenerative disease (ND). Recently, smart nanoassemblies prepared from functional nanoparticles, which possess the ability to interfere with different NME factors, have shown great promise to enhance the diagnostic and therapeutic efficacy of NDs. Herein, this review highlights the recent advances of stimuli-responsive nanoassemblies that can effectively combat the NME for the management of ND. The first section outlined the NME properties and their interrelations that are exploitable for nanoscale targeting. The discussion is then extended to the controlled assembly of functional nanoparticles for the construction of stimuli-responsive nanoassemblies. Further, the applications of stimuli-responsive nanoassemblies for the enhanced diagnosis and therapy of ND are introduced. Finally, perspectives on the future development of NME-tailored nanomedicines are given.


Assuntos
Nanopartículas , Doenças Neurodegenerativas , Humanos , Nanomedicina , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/terapia , Estresse Oxidativo
12.
J Control Release ; 324: 69-103, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32423874

RESUMO

The recent designs of dynamic nanoassemblies exploiting the tumor-targeting properties have received increasing attention for tumor imaging and therapy due to their tumor-specific delivery and enhanced antitumor efficacy. However, these designs are mainly focused on the macroscopic tumor therapeutic effect, while the nano-bio interactions in the tumor microenvironment (TME) remain poorly understood. This review aims to provide an overview of the development of tumor-responsive nanoassemblies towards the imaging, therapy and TME modulation in the tumor site. The tumor biology leading to TME formation and the potential TME properties for the practicable design of tumor-targeting nanoassemblies has been outlined. Furthermore, the various approaches for TME modification and the realization via dynamic nanoassemblies for enhanced tumor therapy were reviewed. Lastly, the prospects of these methods were briefly discussed. These strategies may inspire the development of new combinational cancer therapeutics.


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Microambiente Tumoral
13.
Adv Colloid Interface Sci ; 277: 102117, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32035999

RESUMO

Recently, there have been increasing demand for the application of Pickering emulsions in various industries due to its combined advantage in terms of cost, quality and sustainability. This review aims to provide a complete overview of the available methodology for the physical characterization of emulsions that are stabilized by solid particles (known as Pickering emulsion). Current approaches and techniques for the analysis of the formation and properties of the Pickering emulsion were outlined along with the expected results of these methods on the emulsions. Besides, the application of modelling techniques has also been elaborated for the effective characterization of Pickering emulsions. Additionally, approaches to assess the stability of Pickering emulsions against physical deformation such as coalescence and gravitational separation were reviewed. Potential future developments of these characterization techniques were also briefly discussed. This review can act as a guide to researchers to better understand the standard procedures of Pickering emulsion assessment and the advanced methods available to date to study these emulsions, down to the minute details.

14.
Oxid Med Cell Longev ; 2020: 1904178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32855763

RESUMO

Retinal pigment epithelial (RPE) cells are an essential part of the human eye because they not only mediate and control the transfer of fluids and solutes but also protect the retina against photooxidative damage and renew photoreceptor cells through phagocytosis. However, their function necessitates cumulative exposure to the sun resulting in UV damage, which may lead to the development of age-related macular degeneration (AMD). Several studies have shown that UVB induces direct DNA damage and oxidative stress in RPE cells by increasing ROS and dysregulating endogenous antioxidants. Activation of different signaling pathways connected to inflammation, cell cycle arrest, and intrinsic apoptosis was reported as well. Besides that, essential functions like phagocytosis, osmoregulation, and water permeability of RPE cells were also affected. Although the melanin within RPE cells can act as a photoprotectant, this photoprotection decreases with age. Nevertheless, the changes in lens epithelium-derived growth factor (LEDGF) and autophagic activity or application of bioactive compounds from natural products can reverse the detrimental effect of UVB. Additionally, in vivo studies on the whole retina demonstrated that UVB irradiation induces gene and protein level dysregulation, indicating cellular stress and aberrations in the chromosome level. Morphological changes like retinal depigmentation and drusen formation were noted as well which is similar to the etiology of AMD, suggesting the connection of UVB damage with AMD. Therefore, future studies, which include mechanism studies via in vitro or in vivo and other potential bioactive compounds, should be pursued for a better understanding of the involvement of UVB in AMD.


Assuntos
Células Epiteliais/efeitos da radiação , Degeneração Macular/patologia , Epitélio Pigmentado da Retina/efeitos da radiação , Raios Ultravioleta , Apoptose/efeitos da radiação , Células Epiteliais/patologia , Humanos , Inflamassomos/metabolismo , Epitélio Pigmentado da Retina/patologia
15.
Front Pharmacol ; 11: 552453, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33679383

RESUMO

Snowdrop is an iconic early spring flowering plant of the genus Galanthus (Amaryllidaceae). Galanthus species (Galanthus spp.) are economically important plants as ornaments. Galanthus spp has gained significance scientific and commercial interest due to the discovery of Galanthamine as symptomatic treatment drug for Alzhiermer disease. This review aims to discuss the bioactivities of Galanthus spp including anticholinesterase, antimicrobial, antioxidant and anticancer potential of the extracts and chemical constituents of Galanthus spp. This review highlights that Galanthus spp. as the exciting sources for drug discovery and nutraceutical development.

16.
Biology (Basel) ; 9(9)2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899563

RESUMO

Black soldier fly (BSF) larva is an attractive animal feed replacer due to its noticeable nutritional content. However, the conventional rearing method often resulted in BSF with undesirably high heavy metal residues that are harmful to animals. In this work, putrefied Sesbania grandiflora (S. Grandiflora) leaves were employed as feed to rear BSF larvae. The resultant BSF prepupae were found to contain 43.5% protein and 16.7% fat, reflecting a comparable protein content and a 2-fold reduction in crude fat than those reared using conventional kitchen waste. Moreover, high quantities of arginine (25.4 g/kg dry matter basis (DM)), carnitine (32.9 g/kg DM), and short-chain fatty acids, including lauric (40.00%), palmitic (19.20%), and oleic (12.10%) acids, have also been noticed in the BSF prepupae. Furthermore, the BSF larvae have been recorded with 0.185 mg/kg chromium, 0.380 mg/kg selenium, and mercury below the detection limit, which is far lower than those reared using conventional kitchen and agricultural wastes (≈1.7 mg/kg chromium, 1.2 mg/kg selenium, and 0.2 mg/kg mercury). Overall, the study shows that the nutritional quality of BSF prepupae is extensively improved when using S. Grandiflora as their feed. The resultant BSF prepupae may serve as an alternative feed for animal rearing.

17.
Front Pharmacol ; 11: 366, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32372949

RESUMO

Angelicin, a member of the furocoumarin group, is related to psoralen which is well known for its effectiveness in phototherapy. The furocoumarins as a group have been studied since the 1950s but only recently has angelicin begun to come into its own as the subject of several biological studies. Angelicin has demonstrated anti-cancer properties against multiple cell lines, exerting effects via both the intrinsic and extrinsic apoptotic pathways, and also demonstrated an ability to inhibit tubulin polymerization to a higher degree than psoralen. Besides that, angelicin too demonstrated anti-inflammatory activity in inflammatory-related respiratory and neurodegenerative ailments via the activation of NF-κB pathway. Angelicin also showed pro-osteogenesis and pro-chondrogenic effects on osteoblasts and pre-chondrocytes respectively. The elevated expression of pro-osteogenic and chondrogenic markers and activation of TGF-ß/BMP, Wnt/ß-catenin pathway confirms the positive effect of angelicin bone remodeling. Angelicin also increased the expression of estrogen receptor alpha (ERα) in osteogenesis. Other bioactivities, such as anti-viral and erythroid differentiating properties of angelicin, were also reported by several researchers with the latter even displaying an even greater aptitude as compared to the commonly prescribed drug, hydroxyurea, which is currently on the market. Apart from that, recently, a new application for angelicin against periodontitis had been studied, where reduction of bone loss was indirectly caused by its anti-microbial properties. All in all, angelicin appears to be a promising compound for further studies especially on its mechanism and application in therapies for a multitude of common and debilitating ailments such as sickle cell anaemia, osteoporosis, cancer, and neurodegeneration. Future research on the drug delivery of angelicin in cancer, inflammation and erythroid differentiation models would aid in improving the bioproperties of angelicin and efficacy of delivery to the targeted site. More in-depth studies of angelicin on bone remodeling, the pro-osteogenic effect of angelicin in various bone disease models and the anti-viral implications of angelicin in periodontitis should be researched. Finally, studies on the binding of angelicin toward regulatory genes, transcription factors, and receptors can be done through experimental research supplemented with molecular docking and molecular dynamics simulation.

18.
Int J Biol Macromol ; 127: 76-84, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30639596

RESUMO

Stimuli-responsive drug release and controlled delivery play crucial roles in enhancing the therapeutic efficacy and lowering over-dosage induced side effects. In this paper, we report magnetically-triggered drug release and in-vitro anti-colon cancer efficacy of Fe3O4@cellulose nanocrystal (MCNC)-stabilized Pickering emulsions containing curcumin (CUR). The loading efficiency of CUR in the micron-sized (≈7 µm) MCNC-stabilized Pickering emulsions (MCNC-PE) template was found to be 99.35%. The drug release profiles showed that the exposure of MCNC-PE to external magnetic field (EMF) (0.7 T) stimulated the release of bioactive from MCNC-PE achieving 53.30 ±â€¯5.08% of the initial loading over a 4-day period. The MTT assay demonstrated that the CUR-loaded MCNC-PE can effectively inhibits the human colon cancer cells growth down to 18% in the presence of EMF. The formulation also resulted in 2-fold reduction on the volume of the 3-D multicellular spheroids of HCT116 as compared to the control sample. The MCNC particle was found to be non-toxic to brine shrimp up to a concentration of 100 µg/mL. Our findings suggested that the palm-based MCNC-PE could be a promising yet effective colloidal drug delivery system for magnetic-triggered release of bioactive and therapeutics.


Assuntos
Celulose , Neoplasias do Colo , Curcumina , Portadores de Fármacos , Nanopartículas de Magnetita , Nanopartículas , Celulose/química , Celulose/farmacocinética , Celulose/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Emulsões , Células HCT116 , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas/química , Nanopartículas/uso terapêutico , Tamanho da Partícula
19.
Ultrason Sonochem ; 54: 121-128, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30827901

RESUMO

The current work proposed an alternative ultrasound (US) technology, namely the high-intensity ultrasonic tubular reactor (HUTR) for preparing Pickering emulsions. Using the non-toxic and environmentally friendly cellulose nanocrystal (CNC) as a solid stabilizer, Pickering emulsions were produced using the HUTR and the results showed that Pickering emulsions as small as 1.5 µm can be produced using HUTR at the US power and sonication time of 300 W and 15 min respectively. Additionally, the sizes of Pickering emulsion obtained are found to remain the same upon 30 days of storage. The performance of HUTR in emulsion preparation is compared to conventional US horn system at the same US power. It was observed that the use of HUTR allowed generation of Pickering emulsion that is significantly smaller (around 7.40 µm) and with better droplet size distribution (Coefficient of variation, CV = 31%) as compared to those prepared with US horn method (12.75 µm, CV = 36%). This is owing to the better distribution of cavitation activity in the treatment chamber of HUTR as compared to those in the horn, according to the sonochemiluminescence (SCL) study. From the 30-days storage stability analysis, the CNC-PE prepared using HUTR was found to more stable against droplet coalescence in comparison to those prepared using US horn. Our findings suggested that the HUTR possessed superior Pickering emulsification capacity when compared to conventional US horn. Further work will be necessary to evaluate the feasibility of such intensifying tubular reactor technology for larger scale emulsification and other process intensification applications.

20.
Carbohydr Polym ; 155: 391-399, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27702526

RESUMO

We studied the formation of palm olein-in-water (O/W) Pickering emulsion stabilized by Fe3O4-cellulose nanocrystals (MCNC) nanocomposites obtained by ultrasound assisted in-situ co-precipitation method. The synthesized MCNC nanocomposites successfully stabilized Pickering emulsion with dual responses. The magnetic tests revealed a direct-relation between attractability of MCNC-stabilized Pickering emulsions and the emulsion droplet diameter. The Pickering emulsions were stable under pH ranging from 3 to 6. The stability substantially reduced around pH 8-10, and regained slowly when approaching pH 13. From microscopic and mastersizer analysis, monodisperse emulsion droplets were noticed at pH 3-6, and 13, while polydisperse emulsion were obtained at pH 8-12. The Pickering emulsions prepared at pH 6 are stable up to 14 days, while Pickering emulsions at pH 8 experienced coalescence. In this study, the dual stimuli-responsive Pickering emulsion stabilized by MCNC may hold potentials for biomedical and drug delivery as new generation of smart nanotherapeutic carrier.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA