RESUMO
NG-Test CARBA 5 (NG-Biotech) is a rapid in vitro multiplex immunoassay for the phenotypic detection and differentiation of the "big five" carbapenemase families (KPC, OXA-48-like, VIM, IMP, and NDM). Version 2 of this assay was evaluated alongside the Xpert Carba-R assay (Cepheid, Inc.), the modified carbapenem inactivation method (mCIM), and the CIMTris assay, with a collection of carbapenem-resistant non-fermenting Gram-negative bacilli comprising 138 Pseudomonas aeruginosa and 97 Acinetobacter baumannii isolates. Whole-genome sequencing (WGS) was used as the reference standard. For P. aeruginosa, NG-Test CARBA 5 produced an overall percentage agreement (OPA) with WGS of 97.1%, compared with 92.8% forXpert Carba-R and 90.6% for mCIM. For A. baumannii, as OXA-type carbapenemases (non-OXA-48) are not included, both the NG-Test CARBA 5 and Xpert Carba-R only had an OPA of 6.2%, while the CIMTris performed well with an OPA of 99.0%. The majority of A. baumannii isolates (95.9%) tested falsely positive for IMP on NG-Test CARBA 5; no IMP genes were found on WGS. No clear cause was found for this phenomenon; a cross-reacting protein antigen unique to A. baumannii is a possible culprit. NG-Test CARBA 5 performed well for carbapenemase detection in P. aeruginosa. However, results from A. baumannii isolates should be interpreted with caution.
Assuntos
Proteínas de Bactérias , beta-Lactamases , Humanos , Proteínas de Bactérias/genética , beta-Lactamases/genética , Sequenciamento Completo do Genoma , Carbapenêmicos/farmacologia , Bactérias Gram-Negativas/genética , Pseudomonas aeruginosa/genéticaRESUMO
BACKGROUND: The spread of Carbapenemase-producing Organisms (CPO) remains a major threat globally. Within clinical settings, the existing method of determining gene load involves traditional culture to determine bacterial load and polymerase-chain-reaction-based Xpert Carba-R Assay to determine carbapenemase gene type. However, there is a need for a fast and accurate method of quantifying CPO colonisation to study the risk of persistent CPO carriage. OBJECTIVE: This study evaluated the accuracy of Xpert Carba-R Ct value in estimating carbapenamase producing bacterial loads in stool samples. METHODS: Stool samples were obtained from an ongoing study investigating the household transmission of CPO in Singapore. Stool samples lacking carbapenemase producing organisms were spiked with organism carrying a single carbapenemase gene (blaKPC, blaNDM, blaVIM, blaOXA-48(-like) or blaIMP-1) and serially diluted before being subjected to Xpert Carba-R assay and traditional culture. Standard curves with regression lines showing correlation between Ct values and plate counts were generated. The standard curves were validated with stool samples collected from patients. RESULTS: The limit of detection of blaNDM, blaKPC, and blaOXA-48 was approximately 103 cfu/mL, while that of blaIMP-1 and blaVIM was approximately 104 cfu/mL. Validation of the blaNDM and blaOXA-48 curves revealed average delta values of 0.56 log(cfu/mL) (95% CI 0.24-0.88) and 0.80 log(cfu/mL) (95% CI 0.53-1.07), respectively. CONCLUSIONS: Our validation data for stool positive for blaNDM and blaOXA-48-type suggests that bacterial loads can be estimated within a reasonable range of error.
Assuntos
Carga Bacteriana , Proteínas de Bactérias , Fezes , beta-Lactamases , beta-Lactamases/genética , Fezes/microbiologia , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismoRESUMO
Pseudomonas aeruginosa ST308 clone has been reported to carry carbapenemase genes such as blaIMP and blaVIM but has been rarely associated with blaNDM-1. A total of 199 P. aeruginosa ST308 clinical and environmental isolates obtained between April 2019 and November 2020 from a tertiary-care hospital in Singapore were characterized using whole-genome sequencing. In addition, 71 blaNDM-1-positive ST308 whole-genome sequences from two other local tertiary-care hospitals in Singapore and 83 global blaNDM-1-negative ST308 whole-genome sequences in public databases were included to assess phylogenetic relationships and perform genome analyses. Phylogenetic analysis and divergent time estimation revealed that blaNDM-1-positive P. aeruginosa ST308 was introduced into Singapore in 2005 (95â% highest posterior density: 2001 to 2008). Core genome, resistome, and analyses of all local blaNDM-1-positive ST308 isolates showed chromosomal integration of multiple antibiotic resistance genes (ARGs) [aac(3)-Id, aac(6')-Il, aadA6, aadA11, dfrB5, msr(E), floR, sul2, and qnrVC1], which was absent in global blaNDM-1-negative ST308 sequences. Most ARGs and virulence genes were conserved across isolates originating from the three different local hospitals. Close genetic relatedness of the blaNDM-1-positive ST308 clinical and environmental isolates suggests cocirculation between the hospital environment and human hosts with the hospital environment as a potential reservoir. Core genome single nucleotide polymorphism analyses revealed possible clonal transmission of blaNDM-1-positive ST308 isolates between the three hospitals over 7 years. Bloodstream isolates accounted for six of 95 (6.3%) clinical isolates. This study reports the introduction of a pathogenic blaNDM-1-positive P. aeruginosa ST308 more than a decade ago in Singapore and warrants surveillance for wider dissemination. IMPORTANCE P. aeruginosa is a Gram-negative opportunistic pathogen ubiquitously found in the environment and a major cause of nosocomial infections. While the P. aeruginosa ST308 clone has been known to bear blaIMP and blaVIM among global isolates, reports of blaNDM-1-positive P. aeruginosa ST308 are rare. The local blaNDM-1-positive P. aeruginosa ST308 isolates detected in this study appear to be unique to this region, with evidence of chromosomal acquisition of multiple ARGs compared to global blaNDM-1-negative P. aeruginosa ST308 isolates. Surveillance in Singapore and beyond for dissemination is essential to determine whether existing measures are sufficient to control the spread of this ST308 clone.