Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Mol Microbiol ; 121(4): 671-678, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37700704

RESUMO

Bunyavirales constitute the largest order of enveloped RNA viruses, many members of which cause severe diseases in humans and domestic animals. In recent decades, innovative fluorescence-based methods have paved the way to visualize and track single fluorescent bunyaviral particles in fixed and live cells. This technological breakthrough has enabled imaging of the early stages of infection and the quantification of every step in the bunyavirus cell entry process. Here, we describe the latest procedures for rendering bunyaviral particles fluorescent and discuss the advantages and disadvantages of each approach in light of the most recent advances in fluorescence detection and monitoring of bunyavirus entry. In this mini-review, we also illustrate how fluorescent viral particles are a powerful tool for deciphering the cellular entry process of bunyaviruses, the vast majority of which have not yet been analyzed.


Assuntos
Orthobunyavirus , Vírus de RNA , Animais , Humanos , Fluorescência , Internalização do Vírus
2.
EMBO J ; 40(24): e110041, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34779518

RESUMO

The most severe forms of coronavirus disease 2019 (COVID-19) are often associated with the presence of syncytia in the lungs resulting from cell-cell fusion mediated by the SARS-CoV-2 spike protein. In this issue, Rajah and colleagues show that the SARS-CoV-2 alpha, beta, and delta variants promote enhanced syncytia formation as compared to the original strain.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína da Espícula de Coronavírus/genética
3.
EMBO J ; 40(16): e107821, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34159616

RESUMO

SARS-CoV-2 is a newly emerged coronavirus that caused the global COVID-19 outbreak in early 2020. COVID-19 is primarily associated with lung injury, but many other clinical symptoms such as loss of smell and taste demonstrated broad tissue tropism of the virus. Early SARS-CoV-2-host cell interactions and entry mechanisms remain poorly understood. Investigating SARS-CoV-2 infection in tissue culture, we found that the protease TMPRSS2 determines the entry pathway used by the virus. In the presence of TMPRSS2, the proteolytic process of SARS-CoV-2 was completed at the plasma membrane, and the virus rapidly entered the cells within 10 min in a pH-independent manner. When target cells lacked TMPRSS2 expression, the virus was endocytosed and sorted into endolysosomes, from which SARS-CoV-2 entered the cytosol via acid-activated cathepsin L protease 40-60 min post-infection. Overexpression of TMPRSS2 in non-TMPRSS2 expressing cells abolished the dependence of infection on the cathepsin L pathway and restored sensitivity to the TMPRSS2 inhibitors. Together, our results indicate that SARS-CoV-2 infects cells through distinct, mutually exclusive entry routes and highlight the importance of TMPRSS2 for SARS-CoV-2 sorting into either pathway.


Assuntos
COVID-19/metabolismo , Catepsina L/metabolismo , SARS-CoV-2/fisiologia , Serina Endopeptidases/metabolismo , Animais , COVID-19/genética , Células CACO-2 , Chlorocebus aethiops , Endocitose , Interações entre Hospedeiro e Microrganismos , Humanos , Concentração de Íons de Hidrogênio , Proteólise , Serina Endopeptidases/genética , Transdução de Sinais , Células Vero , Internalização do Vírus
4.
PLoS Pathog ; 19(8): e1011562, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37578957

RESUMO

Toscana virus is a major cause of arboviral disease in humans in the Mediterranean basin during summer. However, early virus-host cell interactions and entry mechanisms remain poorly characterized. Investigating iPSC-derived human neurons and cell lines, we found that virus binding to the cell surface was specific, and 50% of bound virions were endocytosed within 10 min. Virions entered Rab5a+ early endosomes and, subsequently, Rab7a+ and LAMP-1+ late endosomal compartments. Penetration required intact late endosomes and occurred within 30 min following internalization. Virus entry relied on vacuolar acidification, with an optimal pH for viral membrane fusion at pH 5.5. The pH threshold increased to 5.8 with longer pre-exposure of virions to the slightly acidic pH in early endosomes. Strikingly, the particles remained infectious after entering late endosomes with a pH below the fusion threshold. Overall, our study establishes Toscana virus as a late-penetrating virus and reveals an atypical use of vacuolar acidity by this virus to enter host cells.


Assuntos
Vírus da Febre do Flebótomo Napolitano , Humanos , Endocitose , Endossomos/metabolismo , Vacúolos , Internalização do Vírus , Concentração de Íons de Hidrogênio
5.
Cell Mol Life Sci ; 81(1): 71, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300320

RESUMO

Hexosylceramides (HexCer) are implicated in the infection process of various pathogens. However, the molecular and cellular functions of HexCer in infectious cycles are poorly understood. Investigating the enveloped virus Uukuniemi (UUKV), a bunyavirus of the Phenuiviridae family, we performed a lipidomic analysis with mass spectrometry and determined the lipidome of both infected cells and derived virions. We found that UUKV alters the processing of HexCer to glycosphingolipids (GSL) in infected cells. The infection resulted in the overexpression of glucosylceramide (GlcCer) synthase (UGCG) and the specific accumulation of GlcCer and its subsequent incorporation into viral progeny. UUKV and several pathogenic bunyaviruses relied on GlcCer in the viral envelope for binding to various host cell types. Overall, our results indicate that GlcCer is a structural determinant of virions crucial for bunyavirus infectivity. This study also highlights the importance of glycolipids on virions in facilitating interactions with host cell receptors and infectious entry of enveloped viruses.


Assuntos
Orthobunyavirus , Glucosilceramidas , Ligação Viral , Lipidômica , Espectrometria de Massas
6.
J Virol ; 96(5): e0214621, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35019710

RESUMO

With more than 80 members worldwide, the Orthobunyavirus genus in the Peribunyaviridae family is a large genus of enveloped RNA viruses, many of which are emerging pathogens in humans and livestock. How orthobunyaviruses (OBVs) penetrate and infect mammalian host cells remains poorly characterized. Here, we investigated the entry mechanisms of the OBV Germiston (GERV). Viral particles were visualized by cryo-electron microscopy and appeared roughly spherical with an average diameter of 98 nm. Labeling of the virus with fluorescent dyes did not adversely affect its infectivity and allowed the monitoring of single particles in fixed and live cells. Using this approach, we found that endocytic internalization of bound viruses was asynchronous and occurred within 30 to 40 min. The virus entered Rab5a-positive (Rab5a+) early endosomes and, subsequently, late endosomal vacuoles containing Rab7a but not LAMP-1. Infectious entry did not require proteolytic cleavage, and endosomal acidification was sufficient and necessary for viral fusion. Acid-activated penetration began 15 to 25 min after initiation of virus internalization and relied on maturation of early endosomes to late endosomes. The optimal pH for viral membrane fusion was slightly below 6.0, and penetration was hampered when the potassium influx was abolished. Overall, our study provides real-time visualization of GERV entry into host cells and demonstrates the importance of late endosomal maturation in facilitating OBV penetration. IMPORTANCE Orthobunyaviruses (OBVs), which include La Crosse, Oropouche, and Schmallenberg viruses, represent a growing threat to humans and domestic animals worldwide. Ideally, preventing OBV spread requires approaches that target early stages of infection, i.e., virus entry. However, little is known about the molecular and cellular mechanisms by which OBVs enter and infect host cells. Here, we developed accurate, sensitive tools and assays to investigate the penetration process of GERV. Our data emphasize the central role of late endosomal maturation in GERV entry, providing a comprehensive overview of the early stages of an OBV infection. Our study also brings a complete toolbox of innovative methods to study each step of the OBV entry program in fixed and living cells, from virus binding and endocytosis to fusion and penetration. The information gained herein lays the foundation for the development of antiviral strategies aiming to block OBV entry.


Assuntos
Endossomos , Orthobunyavirus , Internalização do Vírus , Animais , Microscopia Crioeletrônica , Endossomos/virologia , Mamíferos , Orthobunyavirus/fisiologia
7.
Mol Cell Proteomics ; 18(12): 2401-2417, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31570497

RESUMO

Novel tick-borne phleboviruses in the Phenuiviridae family, which are highly pathogenic in humans and all closely related to Uukuniemi virus (UUKV), have recently emerged on different continents. How phleboviruses assemble, bud, and exit cells remains largely elusive. Here, we performed high-resolution, label-free mass spectrometry analysis of UUKV immunoprecipitated from cell lysates and identified 39 cellular partners interacting with the viral envelope glycoproteins. The importance of these host factors for UUKV infection was validated by silencing each host factor by RNA interference. This revealed Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 (GBF1), a guanine nucleotide exchange factor resident in the Golgi, as a critical host factor required for the UUKV life cycle. An inhibitor of GBF1, Golgicide A, confirmed the role of the cellular factor in UUKV infection. We could pinpoint the GBF1 requirement to UUKV replication and particle assembly. When the investigation was extended to viruses from various positive and negative RNA viral families, we found that not only phleboviruses rely on GBF1 for infection, but also Flavi-, Corona-, Rhabdo-, and Togaviridae In contrast, silencing or blocking GBF1 did not abrogate infection by the human adenovirus serotype 5 and immunodeficiency retrovirus type 1, the replication of both requires nuclear steps. Together our results indicate that UUKV relies on GBF1 for viral replication, assembly and egress. This study also highlights the proviral activity of GBF1 in the infection by a broad range of important zoonotic RNA viruses.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Vírus Uukuniemi/fisiologia , Animais , Antivirais/farmacologia , Infecções por Bunyaviridae/virologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Glicoproteínas/metabolismo , Interações entre Hospedeiro e Microrganismos , Humanos , Espectrometria de Massas , Proteômica , Piridinas/farmacologia , Quinolinas/farmacologia , Interferência de RNA , Vírus de RNA/fisiologia , Vírus Uukuniemi/efeitos dos fármacos , Células Vero , Proteínas do Envelope Viral/metabolismo , Liberação de Vírus , Replicação Viral
8.
Virologie (Montrouge) ; 23(3): 176-187, 2019 06 01.
Artigo em Francês | MEDLINE | ID: mdl-31210134

RESUMO

Phleboviruses constitute a large group of arthropod-borne viruses (arboviruses), mainly transmitted to their hosts by sandflies and ticks, occasionally by mosquitoes. These viruses have a worldwide distribution and many cause serious diseases - often fatal - in both domestic animals and humans. The global warming, the apparent wide distribution of arthropod reservoirs, and the increasing number of outbreaks show that phleboviruses must be taken seriously as emerging disease agents. This review proposes to focus on the early steps of phlebovirus infection, from virus binding to penetration into the cytosol. We address the most recent knowledge and advances in the entry of these viruses into vertebrate host cells, including virus receptors, cellular factors, endocytic pathways, and fusion.


Assuntos
Arbovírus , Phlebovirus , Psychodidae , Carrapatos , Animais , Animais Domésticos , Humanos
9.
Traffic ; 17(6): 639-56, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26990254

RESUMO

Bunyaviruses represent a growing threat to humans and livestock globally. The receptors, cellular factors and endocytic pathways used by these emerging pathogens to infect cells remain largely unidentified and poorly characterized. DC-SIGN is a C-type lectin highly expressed on dermal dendritic cells that has been found to act as an authentic entry receptor for many phleboviruses (Bunyaviridae), including Rift Valley fever virus (RVFV), Toscana virus (TOSV) and Uukuniemi virus (UUKV). We found that these phleboviruses can exploit another C-type lectin, L-SIGN, for infection. L-SIGN shares 77% sequence homology with DC-SIGN and is expressed on liver sinusoidal endothelial cells. L-SIGN is required for UUKV binding but not for virus internalization. An endocytosis-defective mutant of L-SIGN was still able to mediate virus uptake and infection, indicating that L-SIGN acts as an attachment receptor for phleboviruses rather than an endocytic receptor. Our results point out a fundamental difference in the use of the C-type lectins L-SIGN and DC-SIGN by UUKV to enter cells, although both proteins are closely related in terms of molecular structure and biological function. This study sheds new light on the molecular mechanisms by which phleboviruses target the liver and also highlights the added complexity in virus-receptor interactions beyond attachment.


Assuntos
Moléculas de Adesão Celular/metabolismo , Endocitose , Lectinas Tipo C/metabolismo , Phlebovirus/fisiologia , Receptores de Superfície Celular/metabolismo , Moléculas de Adesão Celular/genética , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Células HeLa , Humanos , Lectinas Tipo C/genética , Fígado/citologia , Fígado/virologia , Phlebovirus/patogenicidade , Ligação Proteica , Receptores de Superfície Celular/genética , Internalização do Vírus
10.
J Virol ; 90(15): 6784-98, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27194760

RESUMO

UNLABELLED: In the last decade, novel tick-borne pathogenic phleboviruses in the family Bunyaviridae, all closely related to Uukuniemi virus (UUKV), have emerged on different continents. To reproduce the tick-mammal switch in vitro, we first established a reverse genetics system to rescue UUKV with a genome close to that of the authentic virus isolated from the Ixodes ricinus tick reservoir. The IRE/CTVM19 and IRE/CTVM20 cell lines, both derived from I. ricinus, were susceptible to the virus rescued from plasmid DNAs and supported production of the virus over many weeks, indicating that infection was persistent. The glycoprotein GC was mainly highly mannosylated on tick cell-derived viral progeny. The second envelope viral protein, GN, carried mostly N-glycans not recognized by the classical glycosidases peptide-N-glycosidase F (PNGase F) and endoglycosidase H (Endo H). Treatment with ß-mercaptoethanol did not impact the apparent molecular weight of GN On viruses originating from mammalian BHK-21 cells, GN glycosylations were exclusively sensitive to PNGase F, and the electrophoretic mobility of the protein was substantially slower after the reduction of disulfide bonds. Furthermore, the amount of viral nucleoprotein per focus forming unit differed markedly whether viruses were produced in tick or BHK-21 cells, suggesting a higher infectivity for tick cell-derived viruses. Together, our results indicate that UUKV particles derived from vector tick cells have glycosylation and structural specificities that may influence the initial infection in mammalian hosts. This study also highlights the importance of working with viruses originating from arthropod vector cells in investigations of the cell biology of arbovirus transmission and entry into mammalian hosts. IMPORTANCE: Tick-borne phleboviruses represent a growing threat to humans globally. Although ticks are important vectors of infectious emerging diseases, previous studies have mainly involved virus stocks produced in mammalian cells. This limitation tends to minimize the importance of host alternation in virus transmission to humans and initial infection at the molecular level. With this study, we have developed an in vitro tick cell-based model that allows production of the tick-borne Uukuniemi virus to high titers. Using this system, we found that virions derived from tick cells have specific structural properties and N-glycans that may enhance virus infectivity for mammalian cells. By shedding light on molecular aspects of tick-derived viral particles, our data illustrate the importance of considering the host switch in studying early virus-mammalian receptor/cell interactions. The information gained here lays the basis for future research on not only tick-borne phleboviruses but also all viruses and other pathogens transmitted by ticks.


Assuntos
Infecções por Bunyaviridae/virologia , Modelos Animais de Doenças , Ixodes/patogenicidade , Infestações por Carrapato/transmissão , Vírus Uukuniemi/patogenicidade , Vírion/fisiologia , Animais , Glicosilação , Células HeLa , Humanos , Infestações por Carrapato/virologia
11.
J Gen Virol ; 96(11): 3192-3197, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26310672

RESUMO

The hantavirus membrane fusion process is mediated by the Gc envelope glycoprotein from within endosomes. However, little is known about the specific mechanism that triggers Gc fusion activation, and its pre- and post-fusion conformations. We established cell-free in vitro systems to characterize hantavirus fusion activation. Low pH was sufficient to trigger the interaction of virus-like particles with liposomes. This interaction was dependent on a pre-fusion glycoprotein arrangement. Further, low pH induced Gc multimerization changes leading to non-reversible Gc homotrimers. These trimers were resistant to detergent, heat and protease digestion, suggesting characteristics of a stable post-fusion structure. No acid-dependent oligomerization rearrangement was detected for the trypsin-sensitive Gn envelope glycoprotein. Finally, acidification induced fusion of glycoprotein-expressing effector cells with non-susceptible CHO cells. Together, the data provide novel information on the Gc fusion trigger and its non-reversible activation involving lipid interaction, multimerization changes and membrane fusion which ultimately allow hantavirus entry into cells.


Assuntos
Infecções por Hantavirus/virologia , Orthohantavírus/fisiologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Endossomos/química , Endossomos/virologia , Orthohantavírus/química , Orthohantavírus/genética , Humanos , Concentração de Íons de Hidrogênio , Multimerização Proteica , Proteínas do Envelope Viral/genética
12.
J Virol ; 88(15): 8565-78, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24850728

RESUMO

UNLABELLED: The Bunyaviridae constitute a large family of enveloped animal viruses, many of which are important emerging pathogens. How bunyaviruses enter and infect mammalian cells remains largely uncharacterized. We used two genome-wide silencing screens with distinct small interfering RNA (siRNA) libraries to investigate host proteins required during infection of human cells by the bunyavirus Uukuniemi virus (UUKV), a late-penetrating virus. Sequence analysis of the libraries revealed that many siRNAs in the screens inhibited infection by silencing not only the intended targets but additional genes in a microRNA (miRNA)-like manner. That the 7-nucleotide seed regions in the siRNAs can cause a perturbation in infection was confirmed by using synthetic miRNAs (miRs). One of the miRs tested, miR-142-3p, was shown to interfere with the intracellular trafficking of incoming viruses by regulating the v-SNARE VAMP3, a strong hit shared by both siRNA screens. Inactivation of VAMP3 by the tetanus toxin led to a block in infection. Using fluorescence-based techniques in fixed and live cells, we found that the viruses enter VAMP3(+) endosomal vesicles 5 min after internalization and that colocalization was maximal 15 min thereafter. At this time, LAMP1 was associated with the VAMP3(+) virus-containing endosomes. In cells depleted of VAMP3, viruses were mainly trapped in LAMP1-negative compartments. Together, our results indicated that UUKV relies on VAMP3 for penetration, providing an indication of added complexity in the trafficking of viruses through the endocytic network. IMPORTANCE: Bunyaviruses represent a growing threat to humans and livestock globally. Unfortunately, relatively little is known about these emerging pathogens. We report here the first human genome-wide siRNA screens for a bunyavirus. The screens resulted in the identification of 562 host cell factors with a potential role in cell entry and virus replication. To demonstrate the robustness of our approach, we confirmed and analyzed the role of the v-SNARE VAMP3 in Uukuniemi virus entry and infection. The information gained lays the basis for future research into the cell biology of bunyavirus infection and new antiviral strategies. In addition, by shedding light on serious caveats in large-scale siRNA screening, our experimental and bioinformatics procedures will be valuable in the comprehensive analysis of past and future high-content screening data.


Assuntos
Inativação Gênica , Interações Hospedeiro-Patógeno , RNA Interferente Pequeno/análise , Vírus Uukuniemi/fisiologia , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Internalização do Vírus , Endossomos/química , Endossomos/virologia , Células Epiteliais/virologia , Testes Genéticos , Células HeLa , Humanos , Proteínas de Membrana Lisossomal/análise , RNA Interferente Pequeno/genética , Fatores de Tempo , Proteína 3 Associada à Membrana da Vesícula/genética
13.
J Virol ; 88(4): 2344-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24335294

RESUMO

How hantaviruses assemble and exit infected cells remains largely unknown. Here, we show that the expression of Andes (ANDV) and Puumala (PUUV) hantavirus Gn and Gc envelope glycoproteins lead to their self-assembly into virus-like particles (VLPs) which were released to cell supernatants. The viral nucleoprotein was not required for particle formation. Further, a Gc endodomain deletion mutant did not abrogate VLP formation. The VLPs were pleomorphic, exposed protrusions and reacted with patient sera.


Assuntos
Orthohantavírus/metabolismo , Virus Puumala/metabolismo , Proteínas do Envelope Viral/metabolismo , Vírion/metabolismo , Western Blotting , Reações Cruzadas/imunologia , Primers do DNA/genética , Ensaio de Imunoadsorção Enzimática , Orthohantavírus/genética , Humanos , Virus Puumala/genética , Vírion/genética
14.
J Virol ; 87(21): 11504-15, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23966408

RESUMO

The arenavirus Lassa virus (LASV) causes a severe hemorrhagic fever with high mortality in humans. Antigen-presenting cells, in particular dendritic cells (DCs), are early and preferred targets of LASV, and their productive infection contributes to the virus-induced immunosuppression observed in fatal disease. Here, we characterized the role of the C-type lectin DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN) in LASV entry into primary human DCs using a chimera of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) expressing the LASV glycoprotein (rLCMV-LASVGP). We found that differentiation of human primary monocytes into DCs enhanced virus attachment and entry, concomitant with the upregulation of DC-SIGN. LASV and rLCMV-LASVGP bound to DC-SIGN via mannose sugars located on the N-terminal GP1 subunit of LASVGP. We provide evidence that DC-SIGN serves as an attachment factor for rLCMV-LASVGP in monocyte-derived immature dendritic cells (MDDC) and can accelerate the capture of free virus. However, in contrast to the phlebovirus Uukuniemi virus (UUKV), which uses DC-SIGN as an authentic entry receptor, productive infection with rLCMV-LASVGP was less dependent on DC-SIGN. In contrast to the DC-SIGN-mediated cell entry of UUKV, entry of rLCMV-LASVGP in MDDC was remarkably slow and depended on actin, indicating the use of different endocytotic pathways. In sum, our data reveal that DC-SIGN can facilitate cell entry of LASV in human MDDC but that its role seems distinct from the function as an authentic entry receptor reported for phleboviruses.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células Dendríticas/virologia , Interações Hospedeiro-Patógeno , Vírus Lassa/fisiologia , Lectinas Tipo C/metabolismo , Receptores de Superfície Celular/metabolismo , Internalização do Vírus , Células Cultivadas , Humanos , Vírus Lassa/genética , Vírus da Coriomeningite Linfocítica/genética , Receptores Virais/metabolismo
15.
Curr Opin Struct Biol ; 83: 102706, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37783197

RESUMO

Amyloidoses are an array of diseases associated with the aggregation of proteins into fibrils. While it was previously thought that amyloid fibril-forming proteins are exclusively host-cell encoded, recent studies have revealed that pathogenic viruses can form amyloid-like fibrils too. Intriguingly, viral amyloids are often composed of virulence factors, known for their contribution to cell death and disease progression. In this review, we survey the literature about viral proteins capable of forming amyloid-like fibrils. The molecular and cellular mechanisms underlying the formation of viral amyloid-like aggregates are explored. In addition, we discuss the functional implications for viral amplification and the complex interplay between viral amyloids, biological functions, virulence, and virus-induced pathologies.


Assuntos
Amiloide , Proteínas Amiloidogênicas , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Fatores de Virulência , Antivirais
16.
Nat Commun ; 14(1): 7344, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957166

RESUMO

For successful infection of host cells and virion production, enveloped viruses, including Zika virus (ZIKV), extensively rely on cellular lipids. However, how virus protein-lipid interactions contribute to the viral life cycle remains unclear. Here, we employ a chemo-proteomics approach with a bifunctional cholesterol probe and show that cholesterol is closely associated with the ZIKV structural protein prM. Bioinformatic analyses, reverse genetics alongside with photoaffinity labeling assays, and atomistic molecular dynamics simulations identified two functional cholesterol binding motifs within the prM transmembrane domain. Loss of prM-cholesterol association has a bipartite effect reducing ZIKV entry and leading to assembly defects. We propose a model in which membrane-resident M facilitates cholesterol-supported lipid exchange during endosomal entry and, together with cholesterol, creates a platform promoting virion assembly. In summary, we identify a bifunctional role of prM in the ZIKV life cycle by mediating viral entry and virus assembly in a cholesterol-dependent manner.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Zika virus/metabolismo , Internalização do Vírus , Replicação Viral , Proteínas Virais/metabolismo , Lipídeos
17.
Duodecim ; 128(18): 1929-35, 2012.
Artigo em Fi | MEDLINE | ID: mdl-23088005

RESUMO

In Ralf Pettersson, we have lost an influential and internationally recognized investigator with a significant impact in the field of animal virology. The Bunyaviridae constitute the viral family that he studied the most. These are relatively simple enveloped viruses with a tri-segmented negative-sense single-stranded RNA genome. With few exceptions, bunyaviruses are transmitted by arthropod vectors and are introduced into the skin of hosts via bites of infected arthropods. Dermal dendritic cells (DCs) are among the first cells to encounter incoming viruses. In this short review, we will discuss how arthropod-borne viruses exploit DCs to spread throughout the body of the human host. The mechanism depends on interactions with DC-SIGN, a C-type lectin abundantly expressed on DCs.


Assuntos
Vetores Artrópodes , Infecções por Bunyaviridae/genética , Infecções por Bunyaviridae/transmissão , Bunyaviridae/genética , Células Dendríticas/virologia , Animais , Mordeduras e Picadas , Humanos
18.
J Clin Med ; 11(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36078923

RESUMO

Ocular immunotherapy-related adverse events (IRAEs), although rare, can be sight-threatening. Our objective was to analyze ocular IRAEs diagnosed in France from the marketing of immune checkpoint inhibitors (ICPIs) until June 2021 and to review the literature. We collected the cases of 28 patients (36 ocular IRAEs), occurring after an average of 17 weeks (±19). Forty-six percent of patients were treated for metastatic melanoma. Anti-PD1 agents were responsible for 57% of the IRAEs. Anterior uveitis was the most common (44%), followed by panuveitis (28%). Of 25 uveitis cases, 80% were bilateral and 60% were granulomatous. We found one case with complete Vogt-Koyanagi-Harada syndrome and one case of birdshot retinochoroidopathy. The other IRAEs were eight ocular surface disorders, one optic neuropathy, and one inflammatory orbitopathy. Seventy percent of the IRAEs were grade 3 according to the common terminology of AEs. ICPIs were discontinued in 60% of patients and 50% received local corticosteroids alone. The literature review included 230 uveitis cases, of which 7% were granulomatous. The distributions of ICPIs, cancer, and type of uveitis were similar to our cohort. Ocular IRAEs appeared to be easily controlled by local or systemic corticosteroids and did not require routine discontinuation of ICPIs. Further work is still warranted to define the optimal management of ocular IRAEs.

19.
Med Sci (Paris) ; 37(6-7): 601-608, 2021.
Artigo em Francês | MEDLINE | ID: mdl-34180819

RESUMO

Rift Valley Fever Virus (RVFV) is an emerging zoonotic pathogen transmitted to humans and livestock through mosquito bites, which was first isolated in Kenya in 1930. The virus is classified by the WHO among the pathogens for which there is an urgent need to develop research, diagnostics, and therapies. However, the efforts developed to control the virus remain limited, and the virus is not well characterized. In this article, we will introduce RVFV and then focus on its virulence factor, the nonstructural protein NSs. We will mainly discuss the ability of this viral protein to form amyloid-like fibrils and its implication in the neurotoxicity associated with RVFV infection.


TITLE: Le virus de la fièvre de la vallée du Rift et son étonnante protéine NSs. ABSTRACT: Le virus de la fièvre de la vallée du Rift (VFVR) est un agent pathogène transmis à l'homme et au bétail par la piqûre de moustiques. Ce virus, découvert au Kenya en 1930, est considéré par l'Organisation mondiale de la santé comme présentant un risque important de provoquer de vastes épidémies. Les moyens dédiés à la lutte contre le VFVR restent toutefois particulièrement limités et le virus est mal connu. Dans cette Synthèse, nous nous attacherons à présenter ce virus avant de nous intéresser plus spécifiquement à son facteur de virulence, la protéine NSs. Nous discuterons la capacité de cette protéine virale à former des fibrilles de type amyloïde et son implication dans la neurotoxicité du virus chez les animaux infectés.


Assuntos
Vírus da Febre do Vale do Rift , Animais , Humanos , Vírus da Febre do Vale do Rift/genética , Proteínas não Estruturais Virais/genética , Fatores de Virulência
20.
Viruses ; 13(5)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068494

RESUMO

With over 80 members worldwide, Orthobunyavirus is the largest genus in the Peribunyaviridae family. Orthobunyaviruses (OBVs) are arthropod-borne viruses that are structurally simple, with a trisegmented, negative-sense RNA genome and only four structural proteins. OBVs are potential agents of emerging and re-emerging diseases and overall represent a global threat to both public and veterinary health. The focus of this review is on the very first steps of OBV infection in mammalian hosts, from virus binding to penetration and release of the viral genome into the cytosol. Here, we address the most current knowledge and advances regarding OBV receptors, endocytosis, and fusion.


Assuntos
Infecções por Bunyaviridae/virologia , Orthobunyavirus/fisiologia , Ligação Viral , Internalização do Vírus , Animais , Transporte Biológico , Membrana Celular/metabolismo , Genoma Viral , Interações Hospedeiro-Patógeno , Humanos , Especificidade da Espécie , Tropismo Viral , Vírion
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA