RESUMO
The adaptor CARD9 functions downstream of C-type lectin receptors (CLRs) for the sensing of microbial infection, which leads to responses by the TH1 and TH17 subsets of helper T cells. The single-nucleotide polymorphism rs4077515 at CARD9 in the human genome, which results in the substitution S12N (CARD9S12N), is associated with several autoimmune diseases. However, the function of CARD9S12N has remained unknown. Here we generated CARD9S12N knock-in mice and found that CARD9S12N facilitated the induction of type 2 immune responses after engagement of CLRs. Mechanistically, CARD9S12N mediated CLR-induced activation of the non-canonical transcription factor NF-κB subunit RelB, which initiated production of the cytokine IL-5 in alveolar macrophages for the recruitment of eosinophils to drive TH2 cell-mediated allergic responses. We identified the homozygous CARD9 mutation encoding S12N in patients with allergic bronchopulmonary aspergillosis and revealed activation of RelB and production of IL-5 in peripheral blood mononuclear cells from these patients. Our study provides genetic and functional evidence demonstrating that CARD9S12N can turn alveolar macrophages into IL-5-producing cells and facilitates TH2 cell-mediated pathologic responses.
Assuntos
Aspergilose Broncopulmonar Alérgica/imunologia , Proteínas Adaptadoras de Sinalização CARD/imunologia , Interleucina-5/biossíntese , Macrófagos Alveolares/imunologia , Células Th2/imunologia , Animais , Aspergilose Broncopulmonar Alérgica/genética , Proteínas Adaptadoras de Sinalização CARD/genética , Humanos , Interleucina-5/imunologia , Macrófagos Alveolares/metabolismo , Camundongos , Polimorfismo de Nucleotídeo Único , Transdução de Sinais/imunologiaRESUMO
Whereas ferromagnets have been known and used for millennia, antiferromagnets were only discovered in the 1930s1. At large scale, because of the absence of global magnetization, antiferromagnets may seem to behave like any non-magnetic material. At the microscopic level, however, the opposite alignment of spins forms a rich internal structure. In topological antiferromagnets, this internal structure leads to the possibility that the property known as the Berry phase can acquire distinct spatial textures2,3. Here we study this possibility in an antiferromagnetic axion insulator-even-layered, two-dimensional MnBi2Te4-in which spatial degrees of freedom correspond to different layers. We observe a type of Hall effect-the layer Hall effect-in which electrons from the top and bottom layers spontaneously deflect in opposite directions. Specifically, under zero electric field, even-layered MnBi2Te4 shows no anomalous Hall effect. However, applying an electric field leads to the emergence of a large, layer-polarized anomalous Hall effect of about 0.5e2/h (where e is the electron charge and h is Planck's constant). This layer Hall effect uncovers an unusual layer-locked Berry curvature, which serves to characterize the axion insulator state. Moreover, we find that the layer-locked Berry curvature can be manipulated by the axion field formed from the dot product of the electric and magnetic field vectors. Our results offer new pathways to detect and manipulate the internal spatial structure of fully compensated topological antiferromagnets4-9. The layer-locked Berry curvature represents a first step towards spatial engineering of the Berry phase through effects such as layer-specific moiré potential.
RESUMO
Communication between insects and plants relies on the exchange of bioactive molecules that traverse the species interface. Although proteinic effectors have been extensively studied, our knowledge of other molecules involved in this process remains limited. In this study, we investigate the role of salivary microRNAs (miRNAs) from the rice planthopper Nilaparvata lugens in suppressing plant immunity. A total of three miRNAs were confirmed to be secreted into host plants during insect feeding. Notably, the sequence-conserved miR-7-5P is specifically expressed in the salivary glands of N. lugens and is secreted into saliva, distinguishing it significantly from homologues found in other insects. Silencing miR-7-5P negatively affects N. lugens feeding on rice plants, but not on artificial diets. The impaired feeding performance of miR-7-5P-silenced insects can be rescued by transgenic plants overexpressing miR-7-5P. Through target prediction and experimental testing, we demonstrate that miR-7-5P targets multiple plant genes, including the immune-associated bZIP transcription factor 43 (OsbZIP43). Infestation of rice plants by miR-7-5P-silenced insects leads to the increased expression of OsbZIP43, while the presence of miR-7-5P counteracts this upregulation effect. Furthermore, overexpressing OsbZIP43 confers plant resistance against insects which can be subverted by miR-7-5P. Our findings suggest a mechanism by which herbivorous insects have evolved salivary miRNAs to suppress plant immunity, expanding our understanding of cross-kingdom RNA interference between interacting organisms.
Assuntos
Hemípteros , MicroRNAs , Oryza , Animais , Interferência de RNA , MicroRNAs/genética , MicroRNAs/metabolismo , Saliva , Hemípteros/fisiologia , Imunidade Vegetal/genética , Oryza/genéticaRESUMO
α9-nAChR, a subtype of nicotinic acetylcholine receptor, is significantly overexpressed in female breast cancer tumor tissues compared to normal tissues. Previous studies have proposed that specific single nucleotide polymorphisms (SNPs) in the CHRNA9 (α9-nAChR) gene are associated with an increased risk of breast cancer in interaction with smoking. The study conducted a breast cancer risk assessment of the α9-nAChR SNP rs10009228 (NM_017581.4:c.1325A > G) in the Taiwanese female population, including 308 breast cancer patients and 198 healthy controls revealed that individuals with the heterozygous A/G or A/A wild genotype have an increased susceptibility to developing breast cancer in the presence of smoking compared to carriers of the G/G variant genotype. Our investigation confirmed the presence of this missense variation, resulting in an alteration of the amino acid sequence from asparagine (N442) to serine (S442) to facilitate phosphorylation within the α9-nAchR protein. Additionally, overexpression of N442 (A/A) in breast cancer cells significantly enhanced cell survival, migration, and cancer stemness compared to S442 (G/G). Four-line triple-negative breast cancer patient-derived xenograft (TNBC-PDX) models with distinct α9-nAChR rs10009228 SNP genotypes (A/A, A/G, G/G) further demonstrated that chronic nicotine exposure accelerated tumor growth through sustained activation of the α9-nAChR downstream oncogenic AKT/ERK/STAT3 pathway, particularly in individuals with the A/G or A/A genotype. Collectively, our study established the links between genetic variations in α9-nAChR and smoking exposure in promoting breast tumor development. This emphasizes the need to consider gene-environment interactions carefully while developing effective breast cancer prevention and treatment strategies.
RESUMO
Discovered decades ago, the quantum Hall effect remains one of the most studied phenomena in condensed matter physics and is relevant for research areas such as topological phases, strong electron correlations and quantum computing1-5. The quantized electron transport that is characteristic of the quantum Hall effect typically originates from chiral edge states-ballistic conducting channels that emerge when two-dimensional electron systems are subjected to large magnetic fields2. However, whether the quantum Hall effect can be extended to higher dimensions without simply stacking two-dimensional systems is unknown. Here we report evidence of a new type of quantum Hall effect, based on Weyl orbits in nanostructures of the three-dimensional topological semimetal Cd3As2. The Weyl orbits consist of Fermi arcs (open arc-like surface states) on opposite surfaces of the sample connected by one-dimensional chiral Landau levels along the magnetic field through the bulk6,7. This transport through the bulk results in an additional contribution (compared to stacked two-dimensional systems and which depends on the sample thickness) to the quantum phase of the Weyl orbit. Consequently, chiral states can emerge even in the bulk. To measure these quantum phase shifts and search for the associated chiral modes in the bulk, we conduct transport experiments using wedge-shaped Cd3As2 nanostructures with variable thickness. We find that the quantum Hall transport is strongly modulated by the sample thickness. The dependence of the Landau levels on the magnitude and direction of the magnetic field and on the sample thickness agrees with theoretical predictions based on the modified Lifshitz-Onsager relation for the Weyl orbits. Nanostructures of topological semimetals thus provide a way of exploring quantum Hall physics in three-dimensional materials with enhanced tunability.
RESUMO
The electrical Hall effect is the production, upon the application of an electric field, of a transverse voltage under an out-of-plane magnetic field. Studies of the Hall effect have led to important breakthroughs, including the discoveries of Berry curvature and topological Chern invariants1,2. The internal magnetization of magnets means that the electrical Hall effect can occur in the absence of an external magnetic field2; this 'anomalous' Hall effect is important for the study of quantum magnets2-7. The electrical Hall effect has rarely been studied in non-magnetic materials without external magnetic fields, owing to the constraint of time-reversal symmetry. However, only in the linear response regime-when the Hall voltage is linearly proportional to the external electric field-does the Hall effect identically vanish as a result of time-reversal symmetry; the Hall effect in the nonlinear response regime is not subject to such symmetry constraints8-10. Here we report observations of the nonlinear Hall effect10 in electrical transport in bilayers of the non-magnetic quantum material WTe2 under time-reversal-symmetric conditions. We show that an electric current in bilayer WTe2 leads to a nonlinear Hall voltage in the absence of a magnetic field. The properties of this nonlinear Hall effect are distinct from those of the anomalous Hall effect in metals: the nonlinear Hall effect results in a quadratic, rather than linear, current-voltage characteristic and, in contrast to the anomalous Hall effect, the nonlinear Hall effect results in a much larger transverse than longitudinal voltage response, leading to a nonlinear Hall angle (the angle between the total voltage response and the applied electric field) of nearly 90 degrees. We further show that the nonlinear Hall effect provides a direct measure of the dipole moment10 of the Berry curvature, which arises from layer-polarized Dirac fermions in bilayer WTe2. Our results demonstrate a new type of Hall effect and provide a way of detecting Berry curvature in non-magnetic quantum materials.
RESUMO
Herbivorous insects such as whiteflies, planthoppers, and aphids secrete abundant orphan proteins to facilitate feeding. Yet, how these genes are recruited and evolve to mediate plant-insect interaction remains unknown. In this study, we report a horizontal gene transfer (HGT) event from fungi to an ancestor of Aleyrodidae insects approximately 42 to 190 million years ago. BtFTSP1 is a salivary protein that is secreted into host plants during Bemisia tabaci feeding. It targets a defensive ferredoxin 1 in Nicotiana tabacum (NtFD1) and disrupts the NtFD1-NtFD1 interaction in plant cytosol, leading to the degradation of NtFD1 in a ubiquitin-dependent manner. Silencing BtFTSP1 has negative effects on B. tabaci feeding while overexpressing BtFTSP1 in N. tabacum benefits insects and rescues the adverse effect caused by NtFD1 overexpression. The association between BtFTSP1 and NtFD1 is newly evolved after HGT, with the homologous FTSP in its fungal donor failing to interact and destabilize NtFD1. Our study illustrates the important roles of horizontally transferred genes in plant-insect interactions and suggests the potential origin of orphan salivary genes.
Assuntos
Afídeos , Hemípteros , Animais , Ferredoxinas/metabolismo , Plantas/metabolismo , Hemípteros/genética , Nicotiana/genética , Nicotiana/metabolismo , Afídeos/metabolismo , Proteínas e Peptídeos Salivares/genéticaRESUMO
PURPOSE: The purpose of this study was to evaluate the effect of UGT1A4 and UGT2B7 polymorphisms on the plasma concentration of lamotrigine in Chinese patients with bipolar disorder. METHODS: A total of 104 patients were included in this study. Steady-state plasma lamotrigine concentrations were determined in each patient after at least 21â days of continuous treatment with a set dose of the drug. Lamotrigine plasma concentrations were ascertained using ultra-performance liquid chromatography. Simultaneously, plasma samples were used for patient genotyping. RESULTS: The age, sex, BMI, daily lamotrigine dose, plasma lamotrigine concentration, and lamotrigine concentration/dose ratio of patients exhibited significant differences, and these were associated with differences in the genotype [ UGT1A4 -142T>G and UGT2B7 -161C>T ( P â <â 0.05)]. Patients with the GG and GT genotypes in UGT1A4 -142T>G had significantly higher lamotrigine concentration/dose values (1.6â ±â 1.1 and 1.7â ±â 0.5â µg/ml per mg/kg) than those with the TT genotype (1.4â ±â 1.1â µg/ml per mg/kg). Likewise, patients with the UGT2B7 -161C>T TT genotype had significantly higher lamotrigine concentration/dose values (1.6â ±â 1.1â µg/ml per mg/kg) than those with the CC genotype (1.3â ±â 1.3â µg/ml per mg/kg). Multiple linear regression analysis showed that sex, lamotrigine dose, UGT1A4 -142T>G, and UGT2B7 -161C>T were the most important factors influencing lamotrigine pharmacokinetics ( P â <â 0.001). CONCLUSION: The study results suggest that the UGT1A4 -142T>G and UGT2B7 -161C>T polymorphisms affect lamotrigine plasma concentrations in patients with bipolar disorder.
Assuntos
Transtorno Bipolar , Glucuronosiltransferase , Lamotrigina , Triazinas , Humanos , Lamotrigina/sangue , Lamotrigina/farmacocinética , Lamotrigina/administração & dosagem , Lamotrigina/uso terapêutico , Glucuronosiltransferase/genética , Masculino , Feminino , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Transtorno Bipolar/sangue , Adulto , Triazinas/farmacocinética , Triazinas/sangue , Triazinas/administração & dosagem , Triazinas/uso terapêutico , Pessoa de Meia-Idade , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Povo Asiático/genéticaRESUMO
PURPOSE: This study was the first to evaluate the effect of CYP3A5*3 gene polymorphisms on plasma concentration of perampanel (PER) in Chinese pediatric patients with epilepsy. METHODS: We enrolled 98 patients for this investigation. Plasma PER concentrations were measured using liquid chromatography-tandem mass spectrometry. Leftover samples from standard therapeutic drug monitoring were allocated for genotyping analysis. The primary measure of efficacy was the rate of seizure reduction with PER treatment at the final checkup. RESULTS: The plasma concentration showed a linear correlation with the daily dose taken ( r â =â 0.17; P â <â 0.05). The ineffective group showed a significantly lower plasma concentration of PER (490.5â ±â 297.1 vs. 633.8â ±â 305.5â µg/ml; P â =â 0.019). For the mean concentration-to-dose (C/D) ratio, the ineffective group showed a significantly lower C/D ratio of PER (3.2â ±â 1.7 vs. 3.8â ±â 2.0; P â =â 0.040). The CYP3A5*3 CC genotype exhibited the highest average plasma concentration of PER at 562.8â ±â 293.9 ng/ml, in contrast to the CT and TT genotypes at 421.1â ±â 165.6 ng/ml and 260.0â ±â 36.1 ng/ml. The mean plasma PER concentration was significantly higher in the adverse events group (540.8â ±â 285.6 vs. 433.0â ±â 227.2 ng/ml; P â =â 0.042). CONCLUSION: The CYP3A5*3 gene's genetic polymorphisms influence plasma concentrations of PER in Chinese pediatric patients with epilepsy. Given that both efficacy and potential toxicity are closely tied to plasma PER levels, the CYP3A5*3 genetic genotype should be factored in when prescribing PER to patients with epilepsy.
Assuntos
Anticonvulsivantes , Citocromo P-450 CYP3A , Epilepsia , Nitrilas , Piridonas , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/efeitos adversos , Citocromo P-450 CYP3A/genética , População do Leste Asiático/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Genótipo , Nitrilas/administração & dosagem , Nitrilas/efeitos adversos , Nitrilas/farmacocinética , Polimorfismo de Nucleotídeo Único/genética , Piridonas/farmacocinética , Piridonas/administração & dosagem , Piridonas/efeitos adversosRESUMO
INTRODUCTION: Patients with allergic bronchopulmonary aspergillosis (ABPA) suffer from repeated exacerbations. The involvement of T-cell subsets remains unclear. METHODS: We enrolled ABPA patients, asthma patients and healthy controls. T-helper type 1 (Th1), 2 (Th2) and 17 (Th17) cells, regulatory T-cells (Treg) and interleukin (IL)-21+CD4+T-cells in total or sorted subsets of peripheral blood mononuclear cells and ABPA bronchoalveolar lavage fluid (BALF) were analysed using flow cytometry. RNA sequencing of subsets of CD4+T-cells was done in exacerbated ABPA patients and healthy controls. Antibodies of T-/B-cell co-cultures in vitro were measured. RESULTS: ABPA patients had increased Th2 cells, similar numbers of Treg cells and decreased circulating Th1 and Th17 cells. IL-5+IL-13+IL-21+CD4+T-cells were rarely detected in healthy controls, but significantly elevated in the blood of ABPA patients, especially the exacerbated ones. We found that IL-5+IL-13+IL-21+CD4+T-cells were mainly peripheral T-helper (Tph) cells (PD-1+CXCR5-), which also presented in the BALF of ABPA patients. The proportions of circulating Tph cells were similar among ABPA patients, asthma patients and healthy controls, while IL-5+IL-13+IL-21+ Tph cells significantly increased in ABPA patients. Transcriptome data showed that Tph cells of ABPA patients were Th2-skewed and exhibited signatures of follicular T-helper cells. When co-cultured in vitro, Tph cells of ABPA patients induced the differentiation of autologous B-cells into plasmablasts and significantly enhanced the production of IgE. CONCLUSION: We identified a distinctly elevated population of circulating Th2-skewed Tph cells that induced the production of IgE in ABPA patients. It may be a biomarker and therapeutic target for ABPA.
Assuntos
Aspergilose Broncopulmonar Alérgica , Linfócitos B , Líquido da Lavagem Broncoalveolar , Células Th2 , Humanos , Masculino , Feminino , Aspergilose Broncopulmonar Alérgica/imunologia , Adulto , Células Th2/imunologia , Pessoa de Meia-Idade , Estudos de Casos e Controles , Linfócitos B/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/citologia , Linfócitos T Reguladores/imunologia , Asma/imunologia , Células Th17/imunologia , Linfócitos T Auxiliares-Indutores/imunologiaRESUMO
Hybrid organic-inorganic perovskite (HOIP) ferroelectric materials have great potential for developing self-powered electronic transducers owing to their impressive piezoelectric performance, structural tunability and low processing temperatures. Nevertheless, their inherent brittle and low elastic moduli limit their application in electromechanical conversion. Integration of HOIP ferroelectrics and soft polymers is a promising solution. In this work, a hybrid organic-inorganic rare-earth double perovskite ferroelectric, [RM3HQ]2RbPr(NO3)6 (RM3HQ = (R)-N-methyl-3-hydroxylquinuclidinium) is presented, which possesses multiaxial nature, ferroelasticity and satisfactory piezoelectric properties, including piezoelectric charge coefficient (d33) of 102.3 pC N-1 and piezoelectric voltage coefficient (g33) of 680 × 10-3 V m N-1. The piezoelectric generators (PEG) based on composite films of [RM3HQ]2RbPr(NO3)6@polyurethane (PU) can generate an open-circuit voltage (Voc) of 30 V and short-circuit current (Isc) of 18 µA, representing one of the state-of-the-art PEGs to date. This work has promoted the exploration of new HOIP ferroelectrics and their development of applications in electromechanical conversion devices.
RESUMO
Bone metastasis is the leading cause of tumor-related deaths in patients with prostate cancer (PCa). The interactions between PCa and the bone microenvironment form a vicious cycle. However, the complex molecular mechanism by which PCa regulates the bone microenvironment remains unclear. To determine the role of glucose-regulated protein (GRP78) in bone metastasis and growth, we established intracardiac injection and tibial injection models, and performed their histological staining. To assess the effect of GRP78 on the differentiation of osteoblasts and osteoclasts, we performed cell co-culture, enzyme-linked immunosorbent assay, alizarin red staining, and tartrate-resistant acid phosphatase staining. We found that GRP78 is upregulated in PCa tissues and that its upregulation is associated with PCa progression in patients. Functional experiments showed that GRP78 overexpression in PCa cells considerably promotes bone metastasis and induces bone microstructure changes. Silencing GRP78 substantially inhibits the migration and invasion of PCa cells in vitro and bone metastasis and tumor growth in vivo. Mechanistically, GRP78 promotes the migration and invasion of PCa cells via the Sonic hedgehog (Shh) signaling pathway. Cell co-culture showed that GRP78 promotes the differentiation of osteoblasts and osteoclasts through Shh signaling. Our findings suggest that tumor-bone matrix interactions owing to GRP78-activated paracrine Shh signaling by PCa cells regulate the differentiation of osteoblasts and osteoclasts. This process promotes bone metastasis and the proliferation of PCa cells in the bone microenvironment. Targeting the GRP78/Shh axis can serve as a therapeutic strategy to prevent bone metastasis and improve the quality of life of patients with PCa.
Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Humanos , Masculino , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Chaperona BiP do Retículo Endoplasmático , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neoplasias da Próstata/patologia , Qualidade de Vida , Transdução de Sinais/fisiologia , Microambiente TumoralRESUMO
Genome cyclization is essential for viral RNA (vRNA) replication of the vertebrate-infecting flaviviruses, and yet its regulatory mechanisms are not fully understood. Yellow fever virus (YFV) is a notorious pathogenic flavivirus. Here, we demonstrated that a group of cis-acting RNA elements in YFV balance genome cyclization to govern efficient vRNA replication. It was shown that the downstream of the 5'-cyclization sequence hairpin (DCS-HP) is conserved in the YFV clade and is important for efficient YFV propagation. By using two different replicon systems, we found that the function of the DCS-HP is determined primarily by its secondary structure and, to a lesser extent, by its base-pair composition. By combining in vitro RNA binding and chemical probing assays, we found that the DCS-HP orchestrates the balance of genome cyclization through two different mechanisms, as follows: the DCS-HP assists the correct folding of the 5' end in a linear vRNA to promote genome cyclization, and it also limits the overstabilization of the circular form through a potential crowding effect, which is influenced by the size and shape of the DCS-HP structure. We also provided evidence that an A-rich sequence downstream of the DCS-HP enhances vRNA replication and contributes to the regulation of genome cyclization. Interestingly, diversified regulatory mechanisms of genome cyclization, involving both the downstream of the 5'-cyclization sequence (CS) and the upstream of the 3'-CS elements, were identified among different subgroups of the mosquito-borne flaviviruses. In summary, our work highlighted how YFV precisely controls the balance of genome cyclization to ensure viral replication. IMPORTANCE Yellow fever virus (YFV), the prototype of the Flavivirus genus, can cause devastating yellow fever disease. Although it is preventable by vaccination, there are still tens of thousands of yellow fever cases per year, and no approved antiviral medicine is available. However, the understandings about the regulatory mechanisms of YFV replication are obscure. In this study, by a combination of bioinformatics, reverse genetics, and biochemical approaches, it was shown that the downstream of the 5'-cyclization sequence hairpin (DCS-HP) promotes efficient YFV replication by modulating the conformational balance of viral RNA. Interestingly, we found specialized combinations for the downstream of the 5'-cyclization sequence (CS) and upstream of the 3'-CS elements in different groups of the mosquito-borne flaviviruses. Moreover, possible evolutionary relationships among the various downstream of the 5'-CS elements were implied. This work highlighted the complexity of RNA-based regulatory mechanisms in the flaviviruses and will facilitate the design of RNA structure-targeted antiviral therapies.
Assuntos
Replicação Viral , Vírus da Febre Amarela , Animais , Humanos , Ciclização , RNA Viral/metabolismo , Replicação Viral/genética , Febre Amarela/virologia , Vírus da Febre Amarela/metabolismo , Genoma Viral/genética , Linhagem Celular , Cricetinae , Mesocricetus , Células A549RESUMO
Landau band crossings typically stem from the intra-band evolution of electronic states in magnetic fields and enhance the interaction effect in their vicinity. Here in the extreme quantum limit of topological insulator HfTe5, we report the observation of a topological Lifshitz transition from inter-band Landau level crossings using magneto-infrared spectroscopy. By tracking the Landau level transitions, we demonstrate that band inversion drives the zeroth Landau bands to cross with each other after 4.5 T and forms a one-dimensional Weyl mode with the fundamental gap persistently closed. The unusual reduction of the zeroth Landau level transition activity suggests a topological Lifshitz transition at 21 T, which shifts the Weyl mode close to the Fermi level. As a result, a broad and asymmetric absorption feature emerges due to the Pauli blocking effect in one dimension, along with a distinctive negative magneto-resistivity. Our results provide a strategy for realizing one-dimensional Weyl quasiparticles in bulk crystals.
RESUMO
Using circularly polarized light to control quantum matter is a highly intriguing topic in physics, chemistry and biology. Previous studies have demonstrated helicity-dependent optical control of chirality and magnetization, with important implications in asymmetric synthesis in chemistry; homochirality in biomolecules; and ferromagnetic spintronics. We report the surprising observation of helicity-dependent optical control of fully compensated antiferromagnetic order in two-dimensional even-layered MnBi2Te4, a topological axion insulator with neither chirality nor magnetization. To understand this control, we study an antiferromagnetic circular dichroism, which appears only in reflection but is absent in transmission. We show that the optical control and circular dichroism both arise from the optical axion electrodynamics. Our axion induction provides the possibility to optically control a family of [Formula: see text]-symmetric antiferromagnets ([Formula: see text], inversion; [Formula: see text], time-reversal) such as Cr2O3, even-layered CrI3 and possibly the pseudo-gap state in cuprates. In MnBi2Te4, this further opens the door for optical writing of a dissipationless circuit formed by topological edge states.
RESUMO
Zinc (Zn) deficiency not only impairs plant growth and development but also has negative effects on human health. Rice (Oryza Sativa L.) is a staple food for over half of the global population, yet the regulation of Zn deficiency response in rice remains largely unknown. In this study, we provide evidence that two F-group bZIP transcription factors, OsbZIP48/50, play a crucial role in Zn deficiency response. Mutations in OsbZIP48/50 result in impaired growth and reduced Zn/Fe/Cu content under Zn deficiency conditions. The N-terminus of OsbZIP48/OsbZIP50 contains two Zn sensor motifs (ZSMs), deletion or mutation of these ZSMs leads to increased nuclear localization. Both OsbZIP48 and OsbZIP50 exhibit transcriptional activation activity, and the upregulation of 1117 genes involved in metal uptake and other processes by Zn deficiency is diminished in the OsbZIP48/50 double mutant. Both OsbZIP48 and OsbZIP50 bind to the promoter of OsZIP10 and activate the ZDRE cis-element. Amino acid substitution mutation of the ZSM domain of OsbZIP48 in OsbZIP50 mutant background increases the content of Zn/Fe/Cu in brown rice seeds and leaves. Therefore, this study demonstrates that OsbZIP48/50 play a crucial role in regulating metal homoeostasis and identifies their downstream genes involved in the Zn deficiency response in rice.
Assuntos
Oryza , Zinco , Humanos , Zinco/metabolismo , Oryza/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Metais/metabolismo , Homeostase , Regulação da Expressão Gênica de PlantasRESUMO
Optical resonators made of 2D photonic crystal (PhC) slabs provide efficient ways to manipulate light at the nanoscale through small group-velocity modes with low radiation losses. The resonant modes in periodic photonic lattices are predominantly limited by nonleaky guided modes at the boundary of the Brillouin zone below the light cone. Here, we propose a mechanism for ultra-high Q resonators based on the bound states in the continuum (BICs) above the light cone that have zero-group velocity (ZGV) at an arbitrary Bloch wavevector. By means of the mode expansion method, the construction and evolution of avoided crossings and Friedrich-Wintgen BICs are theoretically investigated at the same time. By tuning geometric parameters of the PhC slab, the coalescence of eigenfrequencies for a pair of BIC and ZGV modes is achieved, indicating that the waveguide modes are confined longitudinally by small group-velocity propagation and transversely by BICs. Using this mechanism, we engineer ultra-high Q nanoscale resonators that can significantly suppress the radiative losses, despite the operating frequencies above the light cone and the momenta at the generic k point. Our work suggests that the designed devices possess potential applications in low-threshold lasers and enhanced nonlinear effects.
RESUMO
Amphiphobic fluoroalkyl chains are exploited for creating robust and diverse self-assembled biomimetic catalysts. Long terminal perfluoroalkyl chains (Cn F2n+1 with n=6, 8, and 10) linked with a short perhydroalkyl chains (Cm H2m with m=2 and 3) were used to synthesize several 1,4,7-triazacyclononane (TACN) derivatives, Cn F2n+1 -Cm H2m -TACN. In the presence of an equimolar amount of Zn2+ ions that coordinate the TACN moiety and drive the self-assembly into micelle-like aggregates, the critical aggregation concentration of polyfluorinated Cn F2n+1 -Cm H2m -TACNâ Zn2+ was lowered by â¼1 order of magnitude compared to the traditional perhyroalkyl counterpart with identical carbon number of alkyl chain. When 2'-hydroxypropyl-4-nitrophenyl phosphate was used as the model phosphate substrate, polyfluorinated Cn F2n+1 -Cm H2m -TACNâ Zn2+ assemblies showed higher affinity and catalytic activity, compared to its perhyroalkyl chain-based counterpart. Coarse-grained molecular dynamic simulations have been introduced to explore the supramolecular assembly of polyfluoroalkyl chains in the presence of Zn2+ ions and to better understand their enhanced catalytic activity.
RESUMO
The lone pair electrons in the electronic structure of molecules have been a prominent research focus in chemistry for more than a century. Stable s2 lone pair electrons significantly influence material properties, including thermoelectric properties, nonlinear optical properties, ferroelectricity, and electro(photo)catalysis. While major advances have been achieved in understanding the influence of lone pair electrons on material characteristics, research on this effect in organic-inorganic hybrid materials is in its initial stage. In this work, we successfully obtained a novel organic-inorganic hybrid multifunctional material incorporating Ge with 4s2 lone pair electrons, (MeHDabco)2[GeBr3]4-H2O (MeHDabco=N-methyl-1,4-diazabicyclo[2.2.2]octane) (1). Driven by the stereochemically active lone pair electrons on the Ge2+, 1 crystallizes in the noncentrosymmetric space group P21 at room temperature and exhibits good second harmonic generation (SHG) responses. Interestingly, 1 also shows electrocatalytic activity for the hydrogen evolution reaction (HER) due to the existence of lone pair electrons on Ge2+ cations. The electrochemical experiment combined with the density functional theory (DFT) calculations revealed that the lone pair electrons act as both an active site for proton adsorption and facilitate the ionization of water. This work not only emphasizes the important role of lone pair electrons in material properties and functions but also provides new insight for designing novel Ge-based multifunctional hybrid materials.
RESUMO
BACKGROUND: Normal cells express functional tumor suppressor WW domain-containing oxidoreductase (WWOX), designated WWOXf. UV irradiation induces WWOXf cells to undergo bubbling cell death (BCD) - an event due to the accumulation of nuclear nitric oxide (NO) gas that forcefully pushes the nuclear and cell membranes to form one or two bubbles at room temperature (22 °C) and below. In contrast, when WWOX-deficient or -dysfunctional (WWOXd) cells are exposed to UV and/or cold shock, the cells undergo nuclear pop-out explosion death (POD). We aimed to determine the morphological and biochemical changes in WWOXf cells during BCD versus apoptosis. METHODS: WWOXf and WWOXd cells were exposed to UV followed by measuring BCD or POD by time-lapse microscopy and/or time-lapse holographic microscopy at 4, 22, or 37 °C to visualize morphological changes. Live cell stains were used to measure the kinetics of nitric oxide (NO) production and Ca2+ influx. Extent of cell death was measured by uptake of propidium iodide and by internucleosomal DNA fragmentation using agarose gel electrophoresis. RESULTS: WWOXf cells were exposed to UV and then cold shock, or cold shock and then UV, and cultured at 4, 10, and 22 °C, respectively. Initially, UV induced calcium influx and NO production, which led to nuclear bubbling and final death. Cold shock pretreatment completely suppressed UV-mediated bubbling at 37 °C, so the UV/cold shock-treated cells underwent apoptosis. Without cold shock, UV only induced bubbling at all temperatures, whereas the efficiency of bubbling at 37 °C was reduced by greater than 50%. Morphologically, the WWOXf cell height or thickness was significantly increased during cell division or apoptosis, but the event did not occur in BCD. In comparison, when WWOXd cancer cells received UV or UV/cold shock, these cells underwent NO-independent POD. UV/cold shock effectively downregulated the expression of many proteins such as the housekeeping α-tubulin (> 70%) and ß-actin (< 50%), and cortactin (> 70%) in WWOXf COS7 cells. UV/cold shock induced relocation of α-tubulin to the nucleus and nuclear bubbles in damaged cells. UV induced co-translocation of the WWOX/TRAF2 complex to the nuclei, in which the prosurvival TRAF2 blocked the proapoptotic WWOX via its zinc finger domain. Without WWOX, TRAF2 did not relocate to the nuclei. Cold shock caused the dissociation of the WWOX/TRAF2 complex in the nucleus needed for BCD. In contrast, the formation of the WWOX/TRAF2 complex, plus p53, was strengthened at 37 °C required for apoptosis. CONCLUSIONS: The temperature-sensitive nuclear WWOX/TRAF2 complex acts as a molecular switch, whose dissociation favors BCD at low temperatures, and the association supports apoptosis at 37 °C in UV-treated WWOXf cells.