Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Neurocrit Care ; 37(2): 558-571, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35641805

RESUMO

OBJECTIVES: Subarachnoid hemorrhage (SAH) is a subtype of stroke, and early brain injury (EBI) is a contributor to its unfavorable outcome. microRNA (miRNA) is abundantly expressed in the brain and participates in brain injury. This study investigated the effect of miR-452-3p on EBI after SAH. METHODS: The murine model of SAH was established. miR-452-3p expression was detected 48 h after the model establishment. Neurobehavioral function, blood-brain barrier permeability, brain water content, neuronal apoptosis, and inflammatory factors were evaluated. The cell model of SAH was induced by oxygen hemoglobin. Apoptosis rate, lactate dehydrogenase, and reactive oxygen species were detected. The targeting relationship between miR-452-3p and histone deacetylase 3 (HDAC3) was verified. The acetylation of p65 and the binding of HDAC3 to p65 were detected. The inhibitory protein of the nuclear factor κB pathway (IκBα) was detected. Suberoylanilide hydroxamic acid was injected into the SAH mice treated with miR-452-3p inhibitor. RESULTS: SAH mice showed upregulated miR-452-3p expression; reduced the neurological score; increased blood-brain barrier permeability, brain water content, and neuronal apoptosis; elevated pro-inflammatory factors; and reduced anti-inflammatory factors. SAH increased the apoptosis rate, lactate dehydrogenase release, and reactive oxygen species levels in oxygen-hemoglobin-treated neuron cells. Inhibition of miR-452-3p reversed the above trends. miR-452-3p targeted HDAC3. SAH upregulated p65 acetylation. miR-452-3p inhibitor promoted the binding of HDAC3 to p65, decreased p65 acetylation, and upregulated IκBα. Suberoylanilide hydroxamic acid reversed the protective effect of miR-452-3p inhibitor on SAH mice and aggravated brain injury. CONCLUSIONS: miR-452-3p targeted HDAC3 to inhibit the deacetylation of p65 and activate the nuclear factor κB pathway, thus aggravating EBI after SAH.


Assuntos
Lesões Encefálicas , MicroRNAs , Hemorragia Subaracnóidea , Animais , Anti-Inflamatórios/farmacologia , Apoptose , Lesões Encefálicas/metabolismo , Histona Desacetilases , Lactato Desidrogenases/metabolismo , Camundongos , MicroRNAs/farmacologia , MicroRNAs/uso terapêutico , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , NF-kappa B/farmacologia , NF-kappa B/uso terapêutico , Oxigênio , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Hemorragia Subaracnóidea/tratamento farmacológico , Vorinostat/farmacologia , Vorinostat/uso terapêutico , Água/farmacologia
2.
Mol Ther Oncolytics ; 24: 707-718, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35317516

RESUMO

Glioblastoma (GBM) is characterized as having high molecular heterogeneity and complexity, which can be well revealed by genomic study. A truly effective treatment for GBM should flexibly address its heterogeneities, complexity, and strong drug resistance. This study was performed to explore the effectiveness of an mRNA-based therapeutic strategy using in vitro synthesized PTEN-mRNA and TRAIL-mRNA in tumor cells derived from PTEN-deletion patients. The PTEN gene alterations were revealed by whole-exome sequencing of three paired clinical GBMs and selected as the therapy target. Patient-derived primary glioblastoma stem cells (GBM2) and a DBTRG-cell-derived xenograft were used to detect mRNA's cytotoxicity in vitro and tumor suppression in vivo. Following the successful in vitro synthesis of PTEN-mRNA and TRAIL-mRNA, the combinational treatment of PTEN-mRNA and TRAIL-mRNA significantly suppressed tumor growth compared with treatment with PBS (96.4%), PTEN-mRNA (89.7%), and TRAIL-mRNA (84.5%). The combinational application of PTEN-mRNA and TRAIL-mRNA showed synergistic inhibition of tumor growth, and the JNK pathway might be the major mechanism involved. This study provided a basis for an mRNA-based therapeutic strategy to be developed into an effective patient-tailored treatment for GBM.

3.
Front Bioeng Biotechnol ; 9: 803868, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071212

RESUMO

Primary pulmonary angiosarcoma (PPA) is a rare malignant vascular tumor, of which early diagnosis is challenging due to lack of specific clinical manifestations and a low level of suspicion. Here, we report a case of PPA presented with advanced brain metastasis. A 21-year-old patient with 1 week history of headache and mild cough was hospitalized for a head injury. Head MRI showed multiple intracranial lesions with brain edema. Chest CT displayed bilateral pulmonary infiltrates with mediastinal lymph node enlargement. After 2 months of anti-tuberculosis treatment, the patient was readmitted for persistent headache and cough with occasional hemosputum along with worsening pulmonary and intracranial lesions. Despite seizure prophylaxis and control of intracranial pressure and brain edema, his symptoms progressively aggravated, accompanied by cough with bloody sputum, frequent epileptic seizures, and hypotension. He eventually developed coma and died within 3 months of onset of symptoms. An autopsy confirmed PPA with brain metastasis.

4.
Front Oncol ; 9: 812, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31508371

RESUMO

Introduction: Glioblastoma (GBM) is the most common and malignant variant of intrinsic glial brain tumors. The poor prognosis of GBM has not significantly improved despite the development of innovative diagnostic methods and new therapies. Therefore, further understanding the molecular mechanism that underlies the aggressive behavior of GBM and the identification of appropriate prognostic markers and therapeutic targets is necessary to allow early diagnosis, to develop appropriate therapies and to improve prognoses. Methods: We used a weighted gene co-expression network analysis (WGCNA) to construct a gene co-expression network with 524 glioblastoma samples from The Cancer Genome Atlas (TCGA). A risk score was then constructed based on four module genes and the patients' overall survival (OS) rate. The prognostic and predictive accuracy of the risk score were verified in the GSE16011 cohort and the REMBRANDT cohort. Results: We identified a gene module (the green module) related to prognosis. Then, multivariate Cox analysis was performed on 4 hub genes to construct a Cox proportional hazards regression model from 524 glioblastoma patients. A risk score for predicting survival time was calculated with the following formula based on the top four genes in the green module: risk score = (0.00889 × EXPCLEC5A) + (0.0681 × EXPFMOD) + (0.1724 × EXPFKBP9) + (0.1557 × EXPLGALS8). The 5-year survival rate of the high-risk group (survival rate: 2.7%, 95% CI: 1.2-6.3%) was significantly lower than that of the low-risk group (survival rate: 8.8%, 95% CI: 5.5-14.1%). Conclusions: This study demonstrated the potential application of a WGCNA-based gene prognostic model for predicting the survival outcome of glioblastoma patients.

5.
Oncotarget ; 8(13): 21599-21608, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28423490

RESUMO

The association between XRCC1 Arg194Trp polymorphism and glioma risk were inconsistent from published meta-analyses and epidemiological studies. Hence, we performed this updated and cumulative meta-analysis to reappraisal this relationship. PubMed, Embase, CBM (Chinese Biomedical Database), and CNKI (China National Knowledge Internet) databases were comprehensively searched up to August 13, 2016 (updated on December 22, 2016). After study selection and data extraction from eligible studies, the association was evaluated by odds ratios (ORs) and its 95% confidence intervals (95%CIs) using Comprehensive Meta-Analysis software. Finally 16 case-control studies involving 7011 patients and 9519 healthy controls were yielded. The results indicated that XRCC1 Arg194Trp polymorphism was significantly correlated with the increased risk of glioma [Trp vs. Arg: OR = 1.18(1.05-1.34); TrpTrp vs. ArgArg: OR = 1.66(1.31-2.12); ArgTrp vs. ArgArg: OR = 1.34(1.02-1.77); TrpTrp vs. ArgArg+ArgTrp: OR = 1.47(1.26-1.72); TrpTrp+ArgTrp vs. ArgArg: OR = 1.17(1.01-1.35)]. Cumulative analysis showed the results changed from non-significant to significant when new studies accumulated, and sensitivity analysis indicated the results were stable. Subgroup analysis showed the significant association existed in Asians but not in Caucasians. Current evidence indicated that XRCC1 Arg194Trp polymorphism was associated with increased risk for glioma, especially in Asians; however, relevant studies involving other ethnic groups are required to validate our findings in further.


Assuntos
Neoplasias Encefálicas/genética , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença/genética , Glioma/genética , Povo Asiático/genética , Humanos , Razão de Chances , Polimorfismo de Nucleotídeo Único , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
6.
Exp Ther Med ; 11(3): 1045-1050, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26998035

RESUMO

MicroRNAs (miRs) serve a regulatory function in oxidative radical-mediated inflammation and apoptosis during ischemia/reperfusion (IR) injury. Lipocalin 2 (Lcn-2), a target protein of miR-138, is widely involved in the systemic response to IR injury. The aim of the present study was to investigate the association between miR-138 and Lcn-2 in a rat model of cerebral ischemia/reperfusion (CIR) injury and to verify the interaction between miR-138 and Lcn-2 in a PC12 cell model of hypoxia/reoxygenation injury. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were used to detect the mRNA and protein expression levels of miR-138 and Lcn-2. Cell proliferation was determined by MTT assay. The results suggested that the expression of miR-138 was inversely correlated with the expression of Lcn-2 in the CIR rat model and the PC12 cells subjected to hypoxia and reoxygenation. The expression of Lcn-2 was inhibited by miR-138 mimics and enhanced by miR-138 inhibitors, thereby indicating that miR-138 functions as a negative regulator for Lcn-2 expression. This study provides an experimental basis for the further study of miR-138-based therapy for CIR injury.

7.
Int J Nanomedicine ; 11: 4991-5002, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27757032

RESUMO

As one of the natural herbal flavonoids, myricetin has attracted much research interest, mainly owing to its remarkable anticancer properties and negligible side effects. It holds great potential to be developed as an ideal anticancer drug through improving its bioavailability. This study was performed to investigate the effects of Pluronic-based micelle encapsulation on myricetin-induced cytotoxicity and the mechanisms underlying its anticancer properties in human glioblastoma cells. Cell viability was assessed using a methylthiazol tetrazolium assay and a real-time cell analyzer. Immunoblotting and quantitative reverse transcriptase polymerase chain reaction techniques were used for determining the expression levels of related molecules in protein and mRNA. The results indicated that myricetin-induced cytotoxicity was highly potentiated by the encapsulation of myricetin. Mitochondrial apoptotic pathway was demonstrated to be involved in myricetin-induced glioblastoma cell death. The epidermal growth factor receptor (EGFR)/PI3K/Akt pathway located in the plasma membrane and cytosol and the RAS-ERK pathway located in mitochondria served as upstream and downstream targets, respectively, in myricetin-induced apoptosis. MiR-21 inhibitors interrupted the expression of EGFR, p-Akt, and K-Ras in the same fashion as myricetin-loaded mixed micelles (MYR-MCs) and miR-21 expression were dose-dependently inhibited by MYR-MCs, indicating the interaction of miR-21 with MYR-MCs. This study provided evidence supportive of further development of MYR-MC formulation for preferentially targeting mitochondria of glioblastoma cells.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Flavonoides/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Micelas , Poloxâmero/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/enzimologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Receptores ErbB/metabolismo , Flavonoides/farmacologia , Glioblastoma/enzimologia , Humanos , MicroRNAs/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
8.
Biomed Rep ; 2(3): 432-436, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24748989

RESUMO

Several epidemiological studies suggested that methionine synthase (MTRR) rs1801394 and methionine synthase reductase (MTR) rs1805087 polymorphisms may be involved in the risk of meningioma in adults; however, the results from different case-control studies have been inconsistent. Therefore, we performed a meta-analysis to investigate the association of MTRR and MTR polymorphisms with meningioma. PubMed, Web of Knowledge, China National Knowledge Infrastructure and Wanfang databases were searched up to October 30, 2013 and 3 publications, involving 7 case-control studies, were finally included. Following data extraction, a meta-analysis was conducted using Stata 12.0 software. The pooled results based on the fixed effects model demonstrated that the MTRR rs1801394 polymorphism was associated with an increased risk of meningioma [odds ratio (OR)=1.18, 95% confidence interval (CI): 1.05-1.32 for G vs. A; OR=1.41, 95% CI: 1.12-1.77 for GG vs. AA; OR=1.08, 95% CI: 0.94-1.33 for AG vs. AA; OR=1.19, 95% CI: 1.01-1.40 for (AG+GG) vs. AA; and OR=1.32, 95% CI: 1.07-1.63 for GG vs. (AG+AA)]; however, an association between the MTR rs1805087 polymorphism and the risk of meningioma was not identified [OR=0.99, 95% CI: 0.88-1.12 for G vs. A; OR=1.09, 95% CI: 0.80-1.48 for GG vs. AA; OR=0.95, 95% CI: 0.82-1.11 for AG vs. AA; OR=0.97, 95% CI: 0.84-1.13 for (AG+GG) vs. AA; and OR=1.09, 95% CI: 0.80-1.48 for GG vs. (AG+AA)]. Therefore, the currently available evidence suggests that the MTRR rs1801394 polymorphism may increase the risk of meningioma, whereas the MTRR rs1801394 polymorphism is not associated with meningioma.

9.
Anticancer Res ; 34(2): 729-34, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24511006

RESUMO

BACKGROUND: TNF-related apoptosis-inducing ligand (TRAIL) is considered as a tumor cell-specific cytotoxic agent. Through the aid of mesenchymal stem cells (MSCs), TRAIL is capable of inducing apoptosis of tumor cells in tumor sites. The present study was performed to investigate the cytotoxic effects of TRAIL-engineered MSCs on glioblastoma cells (C6) in vitro. MATERIALS AND METHODS: An expression vector of secreting form of TRAIL was used to engineer MSCs. The cytotoxic effects of TRAIL-transfected MSCs on C6 cells were invstigated using the MTT method and Hochest33258 staining after co-culture of the two cell types. RESULTS: TRAIL and control plasmid transfection of MSCs showed no significant effect on MSC's viability (p>0.05). A significant inhibition of C6 cells was observed when they were co-cultured with TRAIL-engineered MSCs (63.7%±0.12, p<0.05). CONCLUSION: Mesenchymal stem cells were very well tolerant to the transfection of TRAIL-bearing vectors. The cytotoxic effects of TRAIL-engineered MSCs on C6 cells indicates the therapeutic potential of this strategy for treatment of glioblastoma patients.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Células-Tronco Mesenquimais/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF/genética , Animais , Neoplasias Encefálicas/patologia , Técnicas de Cocultura , Engenharia Genética/métodos , Glioblastoma/patologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Ratos , Ratos Transgênicos , Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA