RESUMO
Aqueous manganese metal batteries have emerged as promising candidates for stationary storage due to their natural abundance, safety, and high energy density. However, the high chemical reactivity and sluggish migration kinetics of the Mn metal anode induce a severe hydrogen evolution reaction (HER) and dendrite formation, respectively. The situation deteriorates in the low-concentration electrolyte especially. Here, we propose a novel approach to construct an Mn-enriched interfacial layer (Mn@MIL) on the Mn metal anode surface to address these challenges simultaneously. The Mn@MIL acts as a physical barrier to not only suppress HER but also accelerate the Mn2+ diffusion kinetics through the Mn2+ saturated interfacial layer to inhibit dendrite growth. Therefore, in the low-concentration electrolyte (1 M MnCl2), the Mn||Mn symmetric cells and Mn||V2O5 full cells with high mass loading demonstrate promising cycling stability with minimal polarization and parasitic reactions, making them more suitable for practical applications in a smart grid.
RESUMO
The interfacial structure holds great promise in suppressing dendrite growth and parasitic reactions of zinc metal in aqueous media. Current advancements prioritize novel component fabrication, yet the local crystal structure significantly impacts the interfacial properties. In addition, there is still a critical need for scalable synthesis methods for expediting the commercialization of aqueous zinc metal batteries (AZMBs). Herein, we propose a scalable concentration-controlled method for realizing crystalline to amorphous transformation of the Zn metal interface with exceptional scalability (>1 m2) and processing consistency (>30 trials). Theoretical and experimental analyses highlight the advantages of amorphous ZnO, which exhibits moderate adsorption energy, strong desolvation ability, and hydrophilicity. Employing the amorphous ZnO-coated zinc metal anode (AZO-Zn) significantly enhances the cycling performance, impressively maintaining 1000 cycles at 100 mA cm-2. The prototype AZO-Zn||MnO2@CNT pouch cell demonstrates a capacity of 15.7 mAh and maintains 91% of its highest capacity over 100 cycles, presenting promising avenues for the future commercialization of AZMBs.
RESUMO
The use of electrolyte additives is an efficient approach to mitigating undesirable side reactions and dendrites. However, the existing electrolyte additives do not effectively regulate both the chaotic diffusion of Zn2+ and the decomposition of H2O simultaneously. Herein, a dual-parasitic method is introduced to address the aforementioned issues by incorporating 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIm]OTf) as cosolvent into the Zn(OTf)2 electrolyte. Specifically, the OTf- anion is parasitic in the solvent sheath of Zn2+ to decrease the number of active H2O. Additionally, the EMIm+ cation can construct an electrostatic shield layer and a hybrid organic/inorganic solid electrolyte interface layer to optimize the deposition behavior of Zn2+. This results in a Zn anode with a reversible cycle life of 3000 h, the longest cycle life of full cells (25,000 cycles), and an extremely high initial capacity (4.5 mA h cm-2), providing a promising electrolyte solution for practical applications of rechargeable aqueous zinc-ion batteries.
RESUMO
Low-range light absorption and rapid recombination of photo-generated charge carriers have prevented the occurrence of effective and applicable photocatalysis for decades. Quantum dots (QDs) offer a solution due to their size-controlled photon properties and charge separation capabilities. Herein, well-dispersed interstitial nitrogen-doped TiO2 QDs with stable oxygen vacancies (N-TiO2-x-VO) are fabricated by using a low-temperature, annealing-assisted hydrothermal method. Remarkably, electrostatic repulsion prevented aggregation arising from negative charges accumulated in situ on the surface of N-TiO2-x-VO, enabling complete solar spectrum utilization (200-800 nm) with a 2.5 eV bandgap. Enhanced UV-vis photocatalytic H2 evolution rate (HER) reached 2757 µmol g-1 h-1, 41.6 times higher than commercial TiO2 (66 µmol g-1 h-1). Strikingly, under visible light, HER rate was 189 µmol g-1 h-1. Experimental and simulated studies of mechanisms reveal that VO can serve as an electron reservoir of photo-generated charge carriers on N-doped active sites, and consequently, enhance the separation rate of exciton pairs. Moreover, the negative free energy (-0.35 V) indicates more favorable thermodynamics for HER as compared with bulk TiO2 (0.66 V). This research work paves a new way of developing efficient photocatalytic strategies of HER that are applicable in the sustainable carbon-zero energy supply.
RESUMO
Aqueous manganese-ion batteries (AMIBs) are becoming more noticeable because of their excellent theoretical capacity, outstanding safety profile, and cost-effectiveness. However, there aren't many studies on cathode materials appropriate for AMIBs, and the manganese-ion storage mechanisms within these materials have not been thoroughly investigated. Furthermore, the electrochemical performance of existing cathode materials remains suboptimal. Here, Ag0.11V2O5 is designed and synthesized as the cathode material and introduces the combination displacement/intercalation reaction mechanism to the manganese ion storage for the first time. Ag0.11V2O5 demonstrates a capacity retention of 90.3% after 1200 cycles at 5 A g⻹ and achieves a high rate performance of 100.01 mAh g⻹ at 20 A g⻹. This impressive electrochemical performance is attributed to the reaction, which provides more Mn2+ storage sites and generates highly conductive Ag within the electrode. This study presents a novel approach to achieving high-capacity AMIBs.
RESUMO
As graphene-related technology advances, the benefits of graphene metamaterials become more apparent. In this study, a surface-isolated exciton-based absorber is built by running relevant simulations on graphene, which can achieve more than 98% perfect absorption at multiple frequencies in the MWIR (MediumWavelength Infra-Red (MWIR) band as compared to the typical absorber. The absorber consists of three layers: the bottom layer is gold, the middle layer is dielectric, and the top layer is patterned with graphene. Tunability was achieved by electrically altering graphene's Fermi energy, hence the position of the absorption peak. The influence of graphene's relaxation time on the sensor is discussed. Due to the symmetry of its structure, different angles of light source incidence have little effect on the absorption rate, leading to polarization insensitivity, especially for TE waves, and this absorber has polarization insensitivity at ultra-wide-angle degrees. The sensor is characterized by its tunability, polarisation insensitivity, and high sensitivity, with a sensitivity of up to 21.60 THz/refractive index unit (RIU). This paper demonstrates the feasibility of the multi-frequency sensor and provides a theoretical basis for the realization of the multi-frequency sensor. This makes it possible to apply it to high-sensitivity sensors.
RESUMO
Aqueous manganese ion batteries hold potential for stationary storage applications owing to their merits in cost, energy density, and environmental sustainability. However, the formidable challenge is the instability of metallic manganese (Mn) anodes in aqueous electrolytes due to severe hydrogen evolution reaction (HER), which is more serious than the commonly studied Zn metal anodes. Moreover, the mechanism of HER side reactions has remained unclear. Herein, we design a series of Mn-P alloying anodes by precisely regulating their energy band structures to mitigate the HER issue. It is found that the serious HER primarily originates from the spontaneous Mn-H2O reaction driven by the excessively high HOMO energy level of Mn, rather than electrocatalytic water splitting. Owing to a reduced HOMO energy level and enhanced electron escape work function, the MnP anode achieves an evidently enhanced cycle durability (over 1000 hours at a high current density of 5 mA cm-2). The MnP||AgVO full cell with an N/P ratio of 4 exhibits better rate capability and extended cycle life (7000 cycles) with minimal capacity degradation than the cell using metallic Mn anode (less than 100 cycles). This study provides a practical approach for developing highly durable aqueous Mn ion batteries.
RESUMO
A novel and efficient copper-mediated [3 + 2] heteroannulation reaction of [60]fullerene with N-hydroxybenzimidoyl cyanides has been developed for the synthesis of fullerooxazoles. A possible reaction mechanism involving unique C-CN and N-OH bond cleavages and subsequent C-OH bond formation for N-hydroxybenzimidoyl cyanides is proposed to explain the generation of fullerooxazoles. In addition, the formed fullerooxazoles can be further electrochemically transformed into amidated 1,2-hydrofullerenes.
RESUMO
Photoreduction of CO2 into CO, CH4 or hydrocarbons is attractive, due to environmental compatibility and economic feasibility. Optimizing the reaction engineering of CO2 reduction is an effective and general strategy that should be given special consideration. In this article, the photocatalytic CO2 reduction performances are originally investigated in a low vacuum in both dilute (10%) and pure CO2. We discover that the CH4 yield increased above one hundred times as the vacuum degree increased from barometric pressure to -80 kPa in dilute CO2. It also reveals long-term stability and good cycling performance in a low vacuum. The enhanced CO2 photoreduction performance in a low vacuum comes from better accumulation of photogenerated electrons, less intense Brownian movement of gas molecules in the environment and hindrance of the active site-blocking of gas molecules in the environment. Improved photocatalytic CO2 reduction in a low vacuum is further verified by Pt-TiO2 catalysts. This research presents a general route for producing clean fuels by photocatalytic CO2 reduction in a more effective way.
RESUMO
A novel three-dimensional (3D) vertically-few-layer MoS2 (V-MoS2) nanosheets- zero-dimensional PbS quantum dots (QDs) hybrid structure based broadband photodetector was fabricated, and its photoelectric performance was investigated in detail. We synthesized the V-MoS2 nanosheets by chemical vapor deposition, using the TiO2 layer as the induced layer, and proposed a possible growth mechanism. The use of the TiO2 induction layer successfully changed the growth direction of MoS2 from parallel to vertical. The prepared V-MoS2 nanosheets have a large specific surface area, abundantly exposed edges and excellent light absorption capacity. The V-MoS2 nanosheets detector was then fabricated and investigated, which exhibits a high sensitivity for 635 nm light, a fast response time and an excellent photoelectric response. The V-MoS2 nanosheets with a height of approximately 1 µm successfully broke the light absorption limit caused by the atomic thickness. Finally, we fabricated the PbS QDs/V-MoS2 nanosheets hybrid detector and demonstrated their potential for high-performance broadband photodetectors. The response wavelength of the hybrid detector extends from the visible band to the near-infrared band. The responsivity of the hybrid detector reaches 1.46 A W-1 under 1450 nm illumination. The combination of 3D MoS2 nanosheets and QDs further improves the performance of MoS2-based photodetector devices. We believe that the proposed zero-dimensional QDs and 3D vertical nanosheets hybrid structure broadband photodetector provides a promising way for the next-generation optoelectronic devices.
RESUMO
Real-time quantitative monitoring of miRNAs plays an essential role in diagnosis and therapeutics. Herein, a DSN-coupled graphene nanoarray/gold nanoparticles (GNAs/AuNPs) carbon paper (CP) electrode for the dynamic, sensitive, and real-time analysis of miRNAs is reported. GNAs are vertically grown on the conductive CP by radio frequency plasma enhanced chemical vapor deposition, and AuNPs are electrodeposited on CP/GNAs to build a 3D ultrasensitive sensing interface with large specific surface area, good conductivity and biocompatibility. The dynamic quantitative monitoring of microRNA-21 (miR-21) is realized by cyclic voltammetry with a series of different concentrations within 16 min, and this 3D GNAs/AuNPs DNA-circuit strip shows good performance for the simultaneous detection of miR-21 and miR-155, and the detection limits are as low as 21.4 and 30.3 am, respectively. Moreover, comparable detection results are achieved for clinical samples between the proposed sensor and qRT-PCR, suggesting the reliability of the constructed sensor. This ultrasensitive sensing and disposable DNA-circuit strip with 3D structure can efficiently shorten the diffusion distance between reactive biomolecules and the sensing interface, enhance the hybridization of probes and improve the sensitivity of the biosensor, holding great promise for the rapid, quantitative and dynamic monitoring of multiple low concentrations of biomolecules in point-of-care clinical analysis.
Assuntos
Técnicas Biossensoriais , Ouro , Nanopartículas Metálicas , MicroRNAs , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , DNA , Técnicas Eletroquímicas , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , MicroRNAs/análise , Reprodutibilidade dos TestesRESUMO
The spin Hall effect of light (SHEL), as a photonic analogue of the spin Hall effect, has been widely studied for manipulating spin-polarized photons and precision metrology. In this work, a physical model is established to reveal the impact of the interface pitch angle on the SHEL accompanied by the Imbert-Fedorov angular shift simultaneously. Then, a modified weak measurement technique is proposed in this case to amplify the spin shift experimentally, and the results agree well with the theoretical prediction. Interestingly, the amplified transverse shift is quite sensitive to the variation of the interface pitch angle, and the performance provides a simple and effective method for precise pitch angle sensing with a minimum observable angle of 6.6 × 10-5°.
RESUMO
PURPOSE: The pro-aging miRNA, miR-34a, is hyperactivated in the cardiac myocardial tissues of patients and mice with diabetes, leading to diabetic cardiomyopathy (DCM). Increasing evidence suggests that dihydromyricetin (DHM) can be used to effectively treat cardiomyopathy. In this study, we investigated whether DHM affects the expression of miR-34a in DCM. METHODS: The expression of miR-34a in high-glucose-induced cardiomyocytes and in the heart tissue of diabetic mice was determined by microRNA isolation and quantitative reverse transcription-polymerase chain reaction. Lipofectamine 3000 was used to transfect cardiomyocytes with miR-34a inhibitor, miR-34a mimics, and miR-control. These agents were intravenously injected into the tail vein of streptozotocin-induced diabetic mice. Autophagy and apoptosis were assessed in high-glucose-induced cardiomyocytes and cardiac tissue in diabetic mice by western blotting, immunofluorescence, Masson staining, hematoxylin and eosin staining (H&E), and electron microscopy. RESULTS: DHM clearly ameliorated the cardiac dysfunction in the diabetic mice. The expression of miR-34a was up-regulated in high-glucose-induced cardiomyocytes and in the hearts of diabetic mice, thus impairing autophagy. Treatment with DHM decreased the expression of miR-34a and rescued the impairment of autophagy in high-glucose-induced cardiomyocytes and in the heart tissue of diabetic mice, while the miR-34a mimic offset the effect of DHM with respect to the development of DCM by inhibiting autophagy. CONCLUSIONS: By decreasing the expression of miR-34a, DHM restores impaired autophagy, and thus ameliorates DCM. Therefore, DHM may potentially be used in the treatment of DCM.
Assuntos
Autofagia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Flavonóis/farmacologia , MicroRNAs/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/metabolismo , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Regulação para Baixo , Masculino , Camundongos , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Ratos Wistar , Transdução de Sinais , Função Ventricular Esquerda/efeitos dos fármacosRESUMO
Metasurfaces have been widely studied for manipulating light fields. In this work, a novel metasurface element is achieved with a high circular polarization amplitude conversion efficiency of 88.5% that creates an opposite phase shift ranging from -180° to 180° between incidence and reflection for different spin components. By arranging the elements according to different requirements, spin-dependent reflection, focusing and scattering are demonstrated. It is also demonstrated that tuning of the Fermi energy is an viable way to active control the circular polarization conversion efficiency and expand the applicable bandwidth. The results open a new route for modifying and designing the wavefront of circular polarized light.
Assuntos
Ureter , Obstrução Ureteral , Humanos , Metanálise em Rede , Ureter/cirurgia , Obstrução Ureteral/cirurgia , RimRESUMO
An efficient [4 + 2] cycloaddition reaction of [60]fullerene with the in situ generated aza-o-quinone methides from N-(o-chloromethyl)aryl sulfonamides with the assistance of Cu2O has been developed to afford a series of fullerotetrahydroquinolines. This strategy exhibits a broad substrate scope and excellent functional group tolerance. A tentative reaction pathway for the formation of fullerotetrahydroquinolines is proposed on the basis of the experimental results.
RESUMO
The spin Hall effect of light (SHEL) has been widely studied for manipulating spin-polarized photons. In this Letter, we present a mechanism to tune the spin shift of the SHEL electrically at 1550 nm by means of introducing a graphene layer. The spin shift is quite sensitive to a graphene layer near the Brewster angle for horizontal polarization incidence and can be dynamically tuned by varying the Fermi energy of graphene. We find that the position of the Brewster angle and the value of the spin shift are decided by the real and imaginary parts of graphene conductivity, respectively. In addition, two different tuned regions have been revealed: one is the "step-like switch" region where the spin shift switches between two values, and the other is the "negative modulation" region where the spin shift declines gradually as the Fermi energy increases. These findings may provide a new paradigm for a tunable spin photonic device.
RESUMO
Two-dimensional molybdenum disulfide (MoS2) is a promising material for ultrasensitive photodetectors owing to its tunable band gap and high absorption coefficient. However, controlled synthesis of high-quality, large-area monolayer molybdenum disulfide (MoS2) is still a challenge in practical application. In this work, we report a gold foil assistant chemical vapor deposition method for the synthesis of large-size (>400 µm) single-crystal MoS2 film on a silicon dioxide (SiO2) substrate. The influence of Au foil in enlarging the size of single-crystal MoS2 is investigated systemically using thermal simulation in Ansys workbench 16.0, including thermal conductivity, temperature difference and thermal relaxation time of the interface of SiO2 substrate and Au foil, which indicate that Au foil can increase the temperature of the SiO2 substrate rapidly and decrease the temperature difference between the oven and substrate. Finally, the properties of the monolayer MoS2 film are further confirmed using back-gated field-effect transistors: a high photoresponse of 15.6 A W-1 and a fast photoresponse time of 100 ms. The growth techniques described in this study could be beneficial for the development of other atomically thin two-dimensional transition metal dichalcogenide materials.
RESUMO
A single-layer zinc oxide (ZnO) nanorod array-based micro energy harvester was designed and integrated with a piezoelectric metacapacitor. The device presents outstanding low-frequency (1-10 Hz) mechanical energy harvesting capabilities. When compared with conventional pristine ZnO nanostructured piezoelectric harvesters or generators, both open-circuit potential and short-circuit current are significantly enhanced (up to 3.1 V and 124 nA cm-2) for a single mechanical knock (â¼34 kPa). Higher electromechanical conversion efficiency (1.3 pC/Pa) is also observed. The results indicate that the integration of the piezoelectric metacapacitor is a crucial factor for improving the low-frequency energy harvesting performance. A double piezoelectric-driven mechanism is proposed to explain current higher output power, in which the metacapacitor plays the multiple roles of charge pumping, storing and transferring. An as-fabricated prototype device for lighting an LED demonstrates high power transference capability, with over 95% transference efficiency to the external load.
RESUMO
In this report, UbiE and UbiH in the quinone modification pathway (QMP) were identified in addition to UbiG as bottleneck enzymes in the CoQ10 biosynthesis by Rhodobacter sphaeroides. The CoQ10 content was enhanced after co-overexpression of UbiE and UbiG, however, accompanied by the accumulation of the intermediate 10P-MMBQ. UbiH was then co-overexpressed to pull the metabolic flux towards downstream, resulting in an elevated CoQ10 productivity and decreased biomass. On the other hand, the expression levels of UbiE and UbiG were tuned to eliminate the intermediate accumulation, however at the sacrifice of productivity. To alleviate the detrimental effect on either productivity or cell growth, we tried to fuse UbiG with UbiE and localize them onto the membrane to elevate intermediate conversion. By fusing UbiE and UbiG to pufX, CoQ10 was accumulated to 108.51±2.76mg/L with a biomass of 12.2±0.9g/L. At last, we combined the optimized QMP and the previously engineered 2-methyl-d-erythritol-4-phosphate pathway (MEP) to further boost CoQ10 biosynthesis, resulting in a strain with 138±2.64mg/L CoQ10 production.