Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Nucleic Acids Res ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994565

RESUMO

Precise gene regulation and programmable RNA editing are vital RNA-level regulatory mechanisms. Gene repression tools grounded in small non-coding RNAs, microRNAs, and CRISPR-dCas proteins, along with RNA editing tools anchored in Adenosine Deaminases acting on RNA (ADARs), have found extensive application in molecular biology and cellular engineering. Here, we introduced a novel approach wherein we developed an EcCas6e mediated crRNA-mRNA annealing system for gene repression in Escherichia coli and RNA editing in Saccharomyces cerevisiae. We found that EcCas6e possesses inherent RNA annealing ability attributed to a secondary positively charged cleft, enhancing crRNA-mRNA hybridization and stability. Based on this, we demonstrated that EcCas6e, along with its cognate crRNA repeat containing a complementary region to the ribosome binding site of a target mRNA, effectively represses gene expression up to 25-fold. Furthermore, we demonstrated that multiple crRNAs can be easily assembled and can simultaneously target up to 13 genes. Lastly, the EcCas6e-crRNA system was developed as an RNA editing tool by fusing it with the ADAR2 deaminase domain. The EcCas6e-crRNA mediated gene repression and RNA editing tools hold broad applications for research and biotechnology.

2.
Metab Eng ; 85: 84-93, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39047895

RESUMO

Subcellular compartmentalization is a crucial evolution characteristic of eukaryotic cells, providing inherent advantages for the construction of artificial biological systems to efficiently produce natural products. The establishment of an artificial protein transport system represents a pivotal initial step towards developing efficient artificial biological systems. Peroxisome has been demonstrated as a suitable subcellular compartment for the biosynthesis of terpenes in yeast. In this study, an artificial protein transporter ScPEX5* was firstly constructed by fusing the N-terminal sequence of PEX5 from S. cerevisiae and the C-terminal sequence of PEX5. Subsequently, an artificial protein transport system including the artificial signaling peptide YQSYY and its enhancing upstream 9 amino acid (9AA) residues along with ScPEX5* was demonstrated to exhibit orthogonality to the internal transport system of peroxisomes in S. cerevisiae. Furthermore, a library of 9AA residues was constructed and selected using high throughput pigment screening system to obtain an optimized signaling peptide (oPTS1*). Finally, the ScPEX5*-oPTS1* system was employed to construct yeast cell factories capable of producing the sesquiterpene α-humulene, resulting in an impressive α-humulene titer of 17.33 g/L and a productivity of 0.22 g/L/h achieved through fed-batch fermentation in a 5 L bioreactor. This research presents a valuable tool for the construction of artificial peroxisome cell factories and effective strategies for synthesizing other natural products in yeast.

3.
Microb Cell Fact ; 23(1): 103, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584273

RESUMO

BACKGROUND: The macrolide antibiotic avermectin, a natural product derived from Streptomyces avermitilis, finds extensive applications in agriculture, animal husbandry and medicine. The mtrA (sav_5063) gene functions as a transcriptional regulator belonging to the OmpR family. As a pleiotropic regulator, mtrA not only influences the growth, development, and morphological differentiation of strains but also modulates genes associated with primary metabolism. However, the regulatory role of MtrA in avermectin biosynthesis remains to be elucidated. RESULTS: In this study, we demonstrated that MtrA, a novel OmpR-family transcriptional regulator in S. avermitilis, exerts global regulator effects by negatively regulating avermectin biosynthesis and cell growth while positively controlling morphological differentiation. The deletion of the mtrA gene resulted in an increase in avermectin production, accompanied by a reduction in biomass and a delay in the formation of aerial hyphae and spores. The Electrophoretic Mobility Shift Assay (EMSA) revealed that MtrA exhibited binding affinity towards the upstream region of aveR, the intergenic region between aveA1 and aveA2 genes, as well as the upstream region of aveBVIII in vitro. These findings suggest that MtrA exerts a negative regulatory effect on avermectin biosynthesis by modulating the expression of avermectin biosynthesis cluster genes. Transcriptome sequencing and fluorescence quantitative PCR analysis showed that mtrA deletion increased the transcript levels of the cluster genes aveR, aveA1, aveA2, aveC, aveE, aveA4 and orf-1, which explains the observed increase in avermectin production in the knockout strain. Furthermore, our findings demonstrate that MtrA positively regulates the cell division and differentiation genes bldM and ssgC, while exerting a negative regulatory effect on bldD, thereby modulating the primary metabolic processes associated with cell division, differentiation and growth in S. avermitilis, consequently impacting avermectin biosynthesis. CONCLUSIONS: In this study, we investigated the negative regulatory effect of the global regulator MtrA on avermectin biosynthesis and its effects on morphological differentiation and cell growth, and elucidated its transcriptional regulatory mechanism. Our findings indicate that MtrA plays crucial roles not only in the biosynthesis of avermectin but also in coordinating intricate physiological processes in S. avermitilis. These findings provide insights into the synthesis of avermectin and shed light on the primary and secondary metabolism of S. avermitilis mediated by OmpR-family regulators.


Assuntos
Ivermectina , Ivermectina/análogos & derivados , Streptomyces , Ivermectina/metabolismo , Streptomyces/metabolismo , Macrolídeos/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo
4.
Appl Microbiol Biotechnol ; 108(1): 373, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878095

RESUMO

The lincoamide antibiotic lincomycin, derived from Streptomyces lincolnensis, is widely used for the treatment of infections caused by gram-positive bacteria. As a common global regulatory factor of GntR family, DasR usually exists as a regulatory factor that negatively regulates antibiotic synthesis in Streptomyces. However, the regulatory effect of DasR on lincomycin biosynthesis in S. lincolnensis has not been thoroughly investigated. The present study demonstrates that DasR functions as a positive regulator of lincomycin biosynthesis in S. lincolnensis, and its overexpression strain OdasR exhibits a remarkable 7.97-fold increase in lincomycin production compared to the wild-type strain. The effects of DasR overexpression could be attenuated by the addition of GlcNAc in the medium in S. lincolnensis. Combined with transcriptome sequencing and RT-qPCR results, it was found that most structural genes in GlcNAc metabolism and central carbon metabolism were up-regulated, but the lincomycin biosynthetic gene cluster (lmb) were down-regulated after dasR knock-out. However, DasR binding were detected with the DasR responsive elements (dre) of genes involved in GlcNAc metabolism pathway through electrophoretic mobility shift assay, while they were not observed in the lmb. These findings will provide novel insights for the genetic manipulation of S. lincolnensis to enhance lincomycin production. KEY POINTS: • DasR is a positive regulator that promotes lincomycin synthesis and does not affect spore production • DasR promotes lincomycin production through indirect regulation • DasR correlates with nutrient perception in S. lincolnensis.


Assuntos
Antibacterianos , Regulação Bacteriana da Expressão Gênica , Lincomicina , Streptomyces , Lincomicina/farmacologia , Lincomicina/biossíntese , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/efeitos dos fármacos , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Família Multigênica , Acetilglucosamina/metabolismo , Vias Biossintéticas/genética , Perfilação da Expressão Gênica
5.
BMC Public Health ; 24(1): 1881, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010045

RESUMO

Osteoporosis is a prevalent condition marked by reduced bone density and an elevated risk of fractures, especially among postmenopausal women. Exercise plays a crucial role in preventing and managing osteoporosis, with weight-bearing and impact exercises being particularly effective in enhancing bone density and mitigating disease risk. This study investigated the relationship between various types of impact exercises and osteoporosis using data from the Taiwan Biobank (TWB). The study sample comprised 5,123 individuals without osteoporosis and 1,770 individuals with the condition. Student's t-test and logistic regression analyses were utilized to assess the associations between exercise types and osteoporosis risk. Results indicated that high-impact exercise significantly reduced the likelihood of developing osteoporosis compared to no exercise (odds ratio; OR = 0.573, 95% CI: 0.406-0.810, P = 0.002). Conversely, low-impact exercises did not show a significant overall association with osteoporosis (OR = 1.160, 95% CI: 0.932-1.445, P = 0.184). Stratified analysis by sex revealed that high-impact exercise was protective against osteoporosis in men (OR = 0.391, 95% CI: 0.202-0.755, P = 0.005), but not significantly so in women (OR = 0.671, 95% CI: 0.438-1.027, P = 0.066). These findings suggest that high-impact exercise is associated with a reduced risk of osteoporosis, particularly among Taiwanese men aged 30 to 70.


Assuntos
Exercício Físico , Osteoporose , Humanos , Taiwan/epidemiologia , Feminino , Masculino , Osteoporose/epidemiologia , Pessoa de Meia-Idade , Idoso , Adulto , Bancos de Espécimes Biológicos , Densidade Óssea
6.
Biotechnol Bioeng ; 120(12): 3622-3637, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37691180

RESUMO

S-adenosyl- l-methionine (SAM) is a high-value compound widely used in the treatment of various diseases. SAM can be produced through fermentation, but further enhancing the microbial production of SAM requires novel high-throughput screening methods for rapid detection and screening of mutant libraries. In this work, an SAM-OFF riboswitch capable of responding to the SAM concentration was obtained and a high-throughput platform for screening SAM overproducers was established. SAM synthase was engineered by semirational design and directed evolution, which resulted in the SAM2S203F,W164R,T251S,Y285F,S365R mutant with almost twice higher catalytic activity than the parental enzyme. The best mutant was then introduced into Saccharomyces cerevisiae BY4741, and the resulting strain BSM8 produced a sevenfold higher SAM titer in shake-flask fermentation, reaching 1.25 g L-1 . This work provides a reference for designing biosensors to dynamically detect metabolite concentrations for high-throughput screening and the construction of effective microbial cell factories.


Assuntos
Riboswitch , S-Adenosilmetionina , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ensaios de Triagem em Larga Escala , Riboswitch/genética , Fermentação
7.
Langmuir ; 39(45): 15942-15949, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37914676

RESUMO

Two-dimensional (2D) sheet-like biochar as promising alternatives to graphene nanosheets has gained significant attention in materials science while being highly restricted by its complicated synthetic steps. In this study, the dimethyl sulfoxide/potassium hydroxide (DMSO/KOH) superbase system was first used to pretreat sweet sorghum residues (SS) and then carbonized to prepare sheet-like biochar. Ascribing to the strong nucleophilicity of DMSO/KOH, a synergistic effect was achieved by partially removing non-cellulosic components in SS and swelling the amorphous region of cellulose, leaving more layered cellulose behind (∼46.5 wt %), which was favorable for the formation of 2D biochar nanosheets with high graphitization degrees (∼93.1%). This strategy was also suitable for other biomass fibers (e.g., straw, wood powders, and nuclear shells) to obtain sheet-like biochar. The resulting sheet-like biochar could be compounded with cellulose nanofibers to achieve the structural design of composites and solve the molding problem of biochar, which was beneficial for dyeing wastewater treatment. Thus, this work provides insight into a simple strategy for developing 2D ultrathin sheet-like biochar from sustainable biomass wastes.


Assuntos
Sorghum , Dimetil Sulfóxido , Carvão Vegetal/química , Celulose
8.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36633543

RESUMO

Sharomyces cerevisiae is currently one of the most important foreign gene expression systems. S. cerevisiae is an excellent host for high-value metabolite cell factories due to its advantages of simplicity, safety, and nontoxicity. A promoter, as one of the basic elements of gene transcription, plays an important role in regulating gene expression and optimizing metabolic pathways. Promoters control the direction and intensity of transcription, and the application of promoters with different intensities and performances will largely determine the effect of gene expression and ultimately affect the experimental results. Due to its significant role, there have been many studies on promoters for decades. While some studies have explored and analyzed new promoters with different functions, more studies have focused on artificially modifying promoters to meet their own scientific needs. Thus, this article reviews current research on promoter engineering techniques and related natural promoters in S. cerevisiae. First, we introduce the basic structure of promoters and the classification of natural promoters. Then, the classification of various promoter strategies is reviewed. Finally, by grouping related articles together using various strategies, this review anticipates the future development direction of promoter engineering.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Engenharia Metabólica/métodos , Regiões Promotoras Genéticas/genética , Redes e Vias Metabólicas , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/genética
9.
Appl Microbiol Biotechnol ; 106(5-6): 1933-1944, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35235006

RESUMO

Forskolin, one of the primary active metabolites of labdane-type diterpenoids, exhibits significant medicinal value, such as anticancer, antiasthmatic, and antihypertensive activities. In this study, we constructed a Saccharomyces cerevisiae cell factory that efficiently produced forskolin. First, a chassis strain that can accumulate 145.8 mg/L 13R-manoyl oxide (13R-MO), the critical precursor of forskolin, was constructed. Then, forskolin was produced by integrating CfCYP76AH15, CfCYP76AH11, CfCYP76AH16, ATR1, and CfACT1-8 into the 13R-MO chassis with a titer of 76.25 µg/L. We confirmed that cytochrome P450 enzymes (P450s) are the rate-limiting step by detecting intermediate metabolite accumulation. Forskolin production reached 759.42 µg/L by optimizing the adaptations between CfCYP76AHs, t66CfCPR, and t30AaCYB5. Moreover, multiple metabolic engineering strategies, including regulation of the target genes' copy numbers, amplification of the endoplasmic reticulum (ER) area, and cofactor metabolism enhancement, were implemented to enhance the metabolic flow to forskolin from 13R-MO, resulting in a final forskolin yield of 21.47 mg/L in shake flasks and 79.33 mg/L in a 5 L bioreactor. These promising results provide guidance for the synthesis of other natural terpenoids in S. cerevisiae, especially for those containing multiple P450s in their synthetic pathways. KEY POINTS: • The forskolin biosynthesis pathway was optimized from the perspective of system metabolism for the first time in S. cerevisiae. • The adaptation and optimization of CYP76AHs, t66CfCPR, and t30AaCYB5 promote forskolin accumulation, which can provide a reference for diterpenoids containing complex pathways, especially multiple P450s pathways. • The forskolin titer of 79.33 mg/L is the highest production currently reported and was achieved by fed-batch fermentation in a 5 L bioreactor.


Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae , Vias Biossintéticas , Colforsina , Fermentação , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo
10.
Biotechnol Lett ; 44(7): 857-865, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35643816

RESUMO

OBJECTIVE: To produce valerenic acid (VA) in Saccharomyces cerevisiae by engineering a heterologous synthetic pathway. RESULT: Valerena-4,7(11)-diene synthase (VDS) derived from Valeriana officinalis (valerian) was expressed in S. cerevisiae to generate valerena-4,7(11)-diene as the precursor of VA. By overexpressing the key genes of the mevalonate pathway ERG8, ERG12 and ERG19, and integrating 4 copies of MBP (maltose-binding protein)-VDS-ERG20 gene expression caskets into the genome, the production of valerena-4,7(11)-diene was improved to 75 mg/L. On this basis, the cytochrome P450 monooxygenase LsGAO2 derived from Lactuca sativa was expressed to oxidize valerena-4,7(11)-diene to produce VA, and the most effective VA production strain was used for fermentation. The yield of VA reached 2.8 mg/L in the flask and 6.8 mg/L in a 5-L bioreactor fed glucose. CONCLUSIONS: An S. cerevisiae strain was constructed and optimized to produce VA, but the valerena-4,7(11)-diene oxidation by LsGAO2 is still the rate-limiting step for VA synthesis that needs to be further optimized in future studies.


Assuntos
Indenos , Sesquiterpenos , Valeriana , Fermentação , Indenos/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/metabolismo , Valeriana/genética , Valeriana/metabolismo
11.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498964

RESUMO

The loss of the shattering ability is one of the key events in rice domestication. The strength of the seed shattering ability is closely related to the harvest yield and the adaptability of modern mechanical harvesting methods. In this study, using a population of 587 natural rice cultivars, quantitative trait loci associated with seed shattering were detected by genome-wide association studies (GWASs). We consider the quantitative trait loci (QTLs) qBTS1 and qBTS3 to be the key loci for seed shattering in rice. Additionally, the abscission zone (AZ) and nonabscission zone (NAZ) of materials with a loss of shattering (DZ129) and easy shattering (W517) were subjected to RNA-Seq, and high-quality differential expression profiles were obtained. The AZ-specific differentially expressed genes (DEGs) of W517 were significantly enriched in plant hormone signal transduction, while the AZ-specific DEGs of DZ129 were enriched in phenylpropanoid biosynthesis. We identified candidate genes for the lignin-associated laccase precursor protein (LOC_Os01g63180) and the glycoside hydrolase family (LOC_Os03g14210) in the QTLs qBTS1 (chromosome 1) and qBTS3 (chromosome 3), respectively. In summary, our findings lay the foundation for the further cloning of qBTS1 and qBTS3, which would provide new insights into seed shattering in rice.


Assuntos
Oryza , Oryza/genética , Estudo de Associação Genômica Ampla , RNA-Seq , Fenótipo , Sementes/genética
12.
BMC Gastroenterol ; 21(1): 468, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34906072

RESUMO

BACKGROUND: Gallstones are abnormal masses caused by impaired metabolism of cholesterol, bilirubin, or bile salts in the gallbladder or biliary tract. ATP-binding cassette subfamily G member 8 (ABCG8) is a protein that regulates cholesterol efflux from the liver. Genome-wide association studies (GWAS) and meta-analyses of GWAS revealed the ABCG8 rs11887534 variant as the most common genetic determinant of gallstones in humans. These findings have not been extensively replicated in Taiwanese. Therefore, we appraised the relationship between gallstones and rs11887534 in a relatively large Taiwanese sample. METHODS: We retrieved data collected through questionnaires, physical and biochemical tests from the Taiwan Biobank Bank (TWB). The study participants comprised 7388 men and 13,880 women who voluntarily enrolled in the Taiwan Biobank project between 2008 and 2019. Gallstones were self-reported. RESULTS: The overall sample size was 21,268 comprising 938 gallstone patients and 20,330 non-gallstone individuals. Among the participants, 20,640 had the GG and 628 had the GC + CC genotype. At p-value < 0.05, the baseline genotypes and gallstone status between men and women were not significantly different. The risk of gallstones was higher in participants having the GC + CC compared to the GG genotype: odds ratio (OR); 95% confidence interval (CI) = 1.698; 1.240-2.325), but was lower in men compared to women (OR = 0.763; 95% CI = 0.638-0.913). Compared to men with the rs11887534 GG genotype, women with the GG and GC + CC genotypes had a higher risk of gallstone (OR; 95% CI = 1.304; 1.087-1.565 for GG and 2.291; 1.514-3.467 for GC + CC). The positive association between GC + CC and gallstones was retained after we restricted the analysis to the female participants (OR; 95% CI = 1.789 = 1.208-2.648). Hormone use was associated with an elevated risk of gallstones (OR; 95% CI = 1.359; 1.107-1.668). Relative to GG and no hormone use, we found a significantly high risk among hormone users with the GC + CC genotype (OR; 95% CI = 3.596; 1.495-8.650). CONCLUSIONS: The rs11887534 GC + CC genotype was independently associated with a higher risk of gallstones. This risk was much higher among women, especially those who used hormones for various gynecological purposes.


Assuntos
Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Cálculos Biliares , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Feminino , Cálculos Biliares/epidemiologia , Cálculos Biliares/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Taiwan
13.
Bioorg Med Chem ; 35: 116058, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33588288

RESUMO

New diseases are emerging as the environment changes, so drug manufacturers are always on the lookout for new resources to develop effective and safe drugs. In recent years, many bioactive substances have been produced in the marine environment, which represents an alternative resource for new drugs used to combat major diseases such as cancer or inflammation. Many marine-derived medicinal substances are in preclinical or early stage of clinical development, and some marine drugs have been put on the market, such as ET743 (Yondelis®). This review presents the sources, activities, mechanisms of action and syntheses of bioactive substances based on marine natural products in clinical trials and on the market, which is helpful to understand the progress of drug research by application of marine natural products.


Assuntos
Produtos Biológicos/síntese química , Descoberta de Drogas , Produtos Biológicos/química , Estrutura Molecular
14.
Bioorg Chem ; 106: 104496, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33288320

RESUMO

Many artemisinin derivatives have good inhibitory effects on malignant tumors. In this work, a novel series of artemisinin derivatives containing piperazine and fluorine groups were designed and synthesized and their structures were confirmed by 1H NMR, 13C NMR and HRMS technologies. The in vitro cytotoxicity against various cancer cell lines was evaluated. Among the derivatives, compound 12h was found to exhibit not only the best activity against HCT-116 cells (IC50 = 0.12 ± 0.05 µM), but also low toxicity against normal cell line L02 (IC50 = 12.46 ± 0.10 µM). The mechanisms study revealed that compound 12h caused the cell cycle arrest in G1 phase, induced apoptosis in a concentration-dependent manner, significantly reduced mitochondrial membrane potential, increased intracellular ROS and Ca2+ levels, up-regulated the expression of Bax, cleaved caspase-9, cleaved caspase-3, and down-regulated the expression of Bcl-2 protein. A series of analyses confirmed that 12h can inhibit HCT-116 cells migration and induce apoptosis by a mechanism of the mitochondria-mediated pathway in the HCT-116 cell line. The present work indicates that compound 12h may merit further investigation as a potential therapeutic agent for colorectal cancer.


Assuntos
Antineoplásicos/farmacologia , Artemisininas/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Artemisininas/síntese química , Artemisininas/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Mitocôndrias/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
15.
J Ind Microbiol Biotechnol ; 48(1-2)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33928347

RESUMO

Forskolin, a class of labdane-type diterpenoid, has significant medicinal value in anticancer, antiasthmatic, antihypertensive, and heart-strengthening treatments. The main source of natural forskolin is its extraction from the cork tissue of the root of Coleus forskohlii. However, conventional modes of extraction pose several challenges. In recent years, the construction of microbial cell factories to produce medicinal natural products via synthetic biological methods has effectively solved the current problems and is a research hotspot in this field. This review summarizes the recent progress in the heterologous synthesis of forskolin via synthetic biological technology, analyzes the current challenges, and proposes corresponding strategies.


Assuntos
Colforsina/metabolismo , Colforsina/química , Diterpenos/química , Diterpenos/metabolismo
16.
Korean J Physiol Pharmacol ; 25(4): 261-272, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34187945

RESUMO

Doxorubicin (Dox) is widely used to the treatment of cancer, however, it could cause damage to gastric mucosa. To investigate the protective effects and related mechanisms of coenzyme Q10 (CoQ10) and vitamin C (VC) on Dox-induced gastric mucosal injury, we presented the survey of the 4 groups of the rats with different conditions. The results showed Dox treatment significantly induced GES-1 apoptosis, but preconditioning in GES-1 cells with VC or CoQ10 significantly inhibited the Dox-induced decrease and other harm effects, including the expression and of IκKß, IκBα, NF-κB/p65 and tumor necrosis factor (TNF-α) in GES-1 cells. Moreover, high-throughput sequencing results showed Dox treatment increased the number of harmful gut microbes, and CoQ10 and VC treatment inhibited this effect. CoQ10 and VC treatment inhibits Dox-induced gastric mucosal injury by inhibiting the activation of the IkKB/IκBα/NF-κB/p65/TNF-α pathway, promoting anti-inflammatory effects of gastric tissue and regulating the composition of the intestinal flora.

17.
Microb Cell Fact ; 19(1): 41, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075645

RESUMO

BACKGROUND: Ginsenoside compound K (CK), one of the primary active metabolites of protopanaxadiol-type ginsenosides, is produced by the intestinal flora that degrade ginseng saponins and exhibits diverse biological properties such as anticancer, anti-inflammatory, and anti-allergic properties. However, it is less abundant in plants. Therefore, enabling its commercialization by construction of a Saccharomyces cerevisiae cell factory is of considerable significance. RESULTS: We induced overexpression of PGM2, UGP1, and UGT1 genes in WLT-MVA5, and obtained a strain that produces ginsenoside CK. The production of CK at 96 h was 263.94 ± 2.36 mg/L, and the conversion rate from protopanaxadiol (PPD) to ginsenoside CK was 64.23 ± 0.41%. Additionally, it was observed that the addition of glycerol was beneficial to the synthesis of CK. When 20% glucose (C mol) in the YPD medium was replaced by the same C mol glycerol, CK production increased to 384.52 ± 15.23 mg/L, which was 45.68% higher than that in YPD medium, and the PPD conversion rate increased to 77.37 ± 3.37% as well. As we previously observed that ethanol is beneficial to the production of PPD, ethanol and glycerol were fed simultaneously in the 5-L bioreactor fed fermentation, and the CK levels reached 1.70 ± 0.16 g/L. CONCLUSIONS: In this study, we constructed an S. cerevisiae cell factory that efficiently produced ginsenoside CK. Glycerol effectively increased the glycosylation efficiency of PPD to ginsenoside CK, guiding higher carbon flow to the synthesis of ginsenosides and effectively improving CK production. CK production attained in a 5-L bioreactor was 1.7 g/L after simultaneous feeding of glycerol and ethanol.


Assuntos
Ginsenosídeos/biossíntese , Glicerol/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Sapogeninas/metabolismo , Etanol/metabolismo , Fermentação
18.
Medicina (Kaunas) ; 56(2)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069944

RESUMO

Background and objectives: High-density lipoprotein cholesterol (HDL-C) is important for improving risk estimates of atherosclerotic cardiovascular disease. We investigated the effect of omnivore and diverse vegetarian diets in connection with exercise on HDL-C. Materials and Methods: Historical data of 9588 biobank participants (4025 exercisers and 5563 non-exercisers) aged 30-70 years were categorized as omnivores (n = 8589), former vegetarians (n = 544), lacto-ovo vegetarians (n = 417), and strict vegetarians (n = 38). We used multiple linear regression for analyses. Results: HDL-C levels were higher in exercisers compared to non-exercisers. Compared with omnivores, strict vegetarians had decreased levels of HDL-C (ß = -5.705; p = 0.001) followed by lacto-ovo vegetarians (ß = -3.900; p < 0.001) and former vegetarians (ß = -0.329; p = 0.475). The test for trend was significant (p < 0.001). After categorization by exercise modalities, the ß-value was -13.984 for strict vegetarians, -4.419 for lacto-ovo vegetarians, and -1.864 for former vegetarians, respectively (p < 0.05). There was an interaction between diet and exercise (p = 0.009). Omnivores who exercised regularly had significantly higher HDL-C, whereas strict vegetarians who exercised regularly had significantly lower HDL-C. Conclusions: In summary, strict vegetarian diets in conjunction with regular exercise might not serve as healthful behaviors to be implemented in everyday life considering the negative impact on HDL-C.


Assuntos
HDL-Colesterol/análise , Dieta Vegetariana/normas , Exercício Físico/fisiologia , Adulto , Idoso , Índice de Massa Corporal , HDL-Colesterol/sangue , Dieta Vegetariana/métodos , Dieta Vegetariana/estatística & dados numéricos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Taiwan/epidemiologia
19.
Microb Cell Fact ; 18(1): 160, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547812

RESUMO

BACKGROUND: Alpha-Terpineol (α-Terpineol), a C10 monoterpenoid alcohol, is widely used in the cosmetic and pharmaceutical industries. Construction Saccharomyces cerevisiae cell factories for producing monoterpenes offers a promising means to substitute chemical synthesis or phytoextraction. RESULTS: α-Terpineol was produced by expressing the truncated α-Terpineol synthase (tVvTS) from Vitis vinifera in S. cerevisiae. The α-Terpineol titer was increased to 0.83 mg/L with overexpression of the rate-limiting genes tHMG1, IDI1 and ERG20F96W-N127W. A GSGSGSGSGS linker was applied to fuse ERG20F96W-N127W with tVvTS, and expressing the fusion protein increased the α-Terpineol production by 2.87-fold to 2.39 mg/L when compared with the parental strain. In addition, we found that farnesyl diphosphate (FPP) accumulation by down-regulation of ERG9 expression and deletion of LPP1 and DPP1 did not improve α-Terpineol production. Therefore, ERG9 was overexpressed and the α-Terpineol titer was further increased to 3.32 mg/L. The best α-Terpineol producing strain LCB08 was then used for batch and fed-batch fermentation in a 5 L bioreactor, and the production of α-Terpineol was ultimately improved to 21.88 mg/L. CONCLUSIONS: An efficient α-Terpineol production cell factory was constructed by engineering the S. cerevisiae mevalonate pathway, and the metabolic engineering strategies could also be applied to produce other valuable monoterpene compounds in yeast.


Assuntos
Cicloexenos/metabolismo , Engenharia Metabólica , Monoterpenos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Monoterpenos Cicloexânicos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Sesquiterpenos/metabolismo , Vitis/enzimologia , Vitis/genética
20.
Microb Cell Fact ; 18(1): 83, 2019 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-31103047

RESUMO

BACKGROUND: As renewable biomass, lignocellulose remains one of the major choices for most countries in tackling global energy shortage and environment pollution. Efficient utilization of xylose, an important monosaccharide in lignocellulose, is essential for the production of high-value compounds, such as ethanol, lipids, and isoprenoids. Protopanaxadiol (PPD), a kind of isoprenoids, has important medical values and great market potential. RESULTS: The engineered protopanaxadiol-producing Yarrowia lipolytica strain, which can use xylose as the sole carbon source, was constructed by introducing xylose reductase (XR) and xylitol dehydrogenase (XDH) from Scheffersomyces stipitis, overexpressing endogenous xylulose kinase (ylXKS) and heterologous PPD synthetic modules, and then 18.18 mg/L of PPD was obtained. Metabolic engineering strategies such as regulating cofactor balance, enhancing precursor flux, and improving xylose metabolism rate via XR (K270R/N272D) mutation, the overexpression of tHMG1/ERG9/ERG20 and transaldolase (TAL)/transketolase (TKL)/xylose transporter (TX), were implemented to enhance PPD production. The final Y14 strain exhibited the greatest PPD titer from xylose by fed-batch fermentation in a 5-L fermenter, reaching 300.63 mg/L [yield, 2.505 mg/g (sugar); productivity, 2.505 mg/L/h], which was significantly higher than the titer of glucose fermentation [titer, 167.17 mg/L; yield, 1.194 mg/g (sugar); productivity, 1.548 mg/L/h]. CONCLUSION: The results showed that xylose was more suitable for PPD synthesis than glucose due to the enhanced carbon flux towards acetyl-CoA, the precursor for PPD biosynthetic pathway. This is the first report to produce PPD in Y. lipolytica with xylose as the sole carbon source, which developed a promising strategy for the efficient production of high-value triterpenoid compounds.


Assuntos
Sapogeninas/metabolismo , Xilose/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Biomassa , Vias Biossintéticas , D-Xilulose Redutase/genética , D-Xilulose Redutase/metabolismo , Fermentação , Engenharia Metabólica/métodos , Redes e Vias Metabólicas , Organismos Geneticamente Modificados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA