Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Nature ; 617(7959): 67-72, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020017

RESUMO

Ferroelectric materials are fascinating for their non-volatile switchable electric polarizations induced by the spontaneous inversion-symmetry breaking. However, in all of the conventional ferroelectric compounds, at least two constituent ions are required to support the polarization switching1,2. Here, we report the observation of a single-element ferroelectric state in a black phosphorus-like bismuth layer3, in which the ordered charge transfer and the regular atom distortion between sublattices happen simultaneously. Instead of a homogenous orbital configuration that ordinarily occurs in elementary substances, we found the Bi atoms in a black phosphorous-like Bi monolayer maintain a weak and anisotropic sp orbital hybridization, giving rise to the inversion-symmetry-broken buckled structure accompanied with charge redistribution in the unit cell. As a result, the in-plane electric polarization emerges in the Bi monolayer. Using the in-plane electric field produced by scanning probe microscopy, ferroelectric switching is further visualized experimentally. Owing to the conjugative locking between the charge transfer and atom displacement, we also observe the anomalous electric potential profile at the 180° tail-to-tail domain wall induced by competition between the electronic structure and electric polarization. This emergent single-element ferroelectricity broadens the mechanism of ferroelectrics and may enrich the applications of ferroelectronics in the future.

2.
Nature ; 593(7857): 56-60, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953409

RESUMO

Exciting phenomena may emerge in non-centrosymmetric two-dimensional electronic systems when spin-orbit coupling (SOC)1 interplays dynamically with Coulomb interactions2,3, band topology4,5 and external modulating forces6-8. Here we report synergetic effects between SOC and the Stark effect in centrosymmetric few-layer black arsenic, which manifest as particle-hole asymmetric Rashba valley formation and exotic quantum Hall states that are reversibly controlled by electrostatic gating. The unusual findings are rooted in the puckering square lattice of black arsenic, in which heavy 4p orbitals form a Brillouin zone-centred Γ valley with pz symmetry, coexisting with doubly degenerate D valleys of px origin near the time-reversal-invariant momenta of the X points. When a perpendicular electric field breaks the structure inversion symmetry, strong Rashba SOC is activated for the px bands, which produces spin-valley-flavoured D± valleys paired by time-reversal symmetry, whereas Rashba splitting of the Γ valley is constrained by the pz symmetry. Intriguingly, the giant Stark effect shows the same px-orbital selectiveness, collectively shifting the valence band maximum of the D± Rashba valleys to exceed the Γ Rashba top. Such an orchestrating effect allows us to realize gate-tunable Rashba valley manipulations for two-dimensional hole gases, hallmarked by unconventional even-to-odd transitions in quantum Hall states due to the formation of a flavour-dependent Landau level spectrum. For two-dimensional electron gases, the quantization of the Γ Rashba valley is characterized by peculiar density-dependent transitions in the band topology from trivial parabolic pockets to helical Dirac fermions.

3.
Nano Lett ; 24(35): 11075-11081, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39177195

RESUMO

The ruby lattice is one of the tight-binding models which hosts a flat band in its electronic structure and has potential applications in future spintronics and quantum devices. However, the experimental realization of a ruby lattice in realistic materials remains elusive. Here, we have experimentally realized an atomic ruby lattice by fabricating monolayer CuCl1+x on a Au(111) substrate. Scanning tunneling microscopy/spectra (STM/STS) measurements combined with density-functional theory (DFT) calculations reveal that the Cu atoms are arranged in a ruby lattice in this monolayer. Moreover, a significant density of states (DOS) peak corresponding to the characteristic of a ruby system is observed, consistent with both the tight-binding model and first-principles calculations on the band structure. Our work provides a promising platform to explore the physics of the ruby model.

4.
Environ Sci Technol ; 58(2): 1369-1377, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38048160

RESUMO

An improved fundamental understanding of active site structures can unlock opportunities for catalysis from conceptual design to industrial practice. Herein, we present the computational discovery and experimental demonstration of a highly active surface-phosphorylated ceria catalyst that exhibits robust chlorine tolerance for catalysis. Ab initio molecular dynamics (AIMD) calculations and in situ near-ambient pressure X-ray photoelectron spectroscopy (in situ NAP-XPS) identified a predominantly HPO4 active structure on CeO2(110) and CeO2(111) facets at room temperature. Importantly, further elevating the temperature led to a unique hydrogen (H) atom hopping between coordinatively unsaturated oxygen and the adjacent P═O group of HPO4. Such a mobile H on the catalyst surface can effectively quench the chlorine radicals (Cl•) via an orientated reaction analogous to hydrogen atom transfer (HAT), enabling the surface-phosphorylated CeO2-supported monolithic catalyst to exhibit both expected activity and stability for over 68 days during a pilot test, catalyzing the destruction of a complex chlorinated volatile organic compound industrial off-gas.


Assuntos
Cloro , Oxigênio , Catálise , Temperatura , Hidrogênio
5.
Compr Rev Food Sci Food Saf ; 23(5): e70000, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39217507

RESUMO

Food processing unavoidably introduces various risky ingredients that threaten food safety. N-Nitrosamines (NAs) constitute a class of food contaminants, which are considered carcinogenic to humans. According to the compiled information, pretreatment methods based on solid-phase extraction (SPE) were widely used before the determination of volatile NAs in foods. The innovation of adsorbents and hybridization of other methods have been confirmed as the future trends of SPE-based pretreatment methods. Moreover, technologies based on liquid chromatography and gas chromatography were popularly applied for the detection of NAs. Recently, sensor-based methods have garnered increasing attention due to their efficiency and flexibility. More portable sensor-based technologies are recommended for on-site monitoring of NAs in the future. The application of artificial intelligence can facilitate data processing during high-throughput detection of NAs. Natural bioactive compounds have been confirmed to be effective in mitigating NAs in foods through antioxidation, scavenging precursors, and regulating microbial activities. Meanwhile, they exhibit strong protective activities against hepatic damage, pancreatic cancer, and other NA injuries. Further supplementation of data on the bioavailability of bioactives can be achieved through encapsulation and clinical trials. The utilization of bioinformatics tools rooted in various omics technologies is suggested for investigating novel mechanisms and finally broadening their applications in targeted therapies.


Assuntos
Contaminação de Alimentos , Nitrosaminas , Nitrosaminas/química , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Humanos , Inocuidade dos Alimentos/métodos , Extração em Fase Sólida/métodos , Análise de Alimentos/métodos
6.
Small ; 19(33): e2300964, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37066740

RESUMO

The long-range magnetic ordering in frustrated magnetic systems is stabilized by coupling magnetic moments to various degrees of freedom, for example, by enhancing magnetic anisotropy via lattice distortion. Here, the unconventional spin-lattice coupled metamagnetic properties of atomically-thin CrOCl, a van der Waals antiferromagnet with inherent magnetic frustration rooted in the staggered square lattice, are reported. Using temperature- and angle-dependent tunneling magnetoconductance (TMC), in complementary with magnetic torque and first-principles calculations, the antiferromagnetic (AFM)-to-ferrimagnetic (FiM) metamagnetic transitions (MTs) of few-layer CrOCl are revealed to be triggered by collective magnetic moment flipping rather than the established spin-flop mechanism, when external magnetic field (H) enforces a lattice reconstruction interlocked with the five-fold periodicity of the FiM phase. The spin-lattice coupled MTs are manifested by drastic jumps in TMC, which show anomalous upshifts at the transition thresholds and persist much higher above the AFM Néel temperature. While the MTs exhibit distinctive triaxial anisotropy, reflecting divergent magnetocrystalline anisotropy of the c-axis AFM ground state, the resulting FiM phase has an a-c easy plane in which the magnetization axis is freely rotated by H. At the 2D limit, such a field-tunable FiM phase may provide unique opportunities to explore exotic emergent phenomena and novel spintronics devices.

7.
Phys Rev Lett ; 131(23): 236801, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38134770

RESUMO

Materials with negative longitudinal piezoelectric response have been a focus of recent research. So far, reported examples are mostly three-dimensional bulk materials, either compounds with strong ionic bonds or layered materials with van der Waals interlayer gaps. Here, we report the first example in two-dimensional elemental materials-the class of group-Va monolayers. From first-principles calculations, we show that these materials possess giant negative longitudinal piezoelectric coefficient e_{11}. Importantly, its physical mechanism is also distinct from all previous proposals, connected with the special buckling driven polarization in these elemental systems. As a result, the usually positive internal strain contribution to piezoelectricity becomes negative and even dominates over the clamped ion contribution in Bi monolayers. Based on this new mechanism, we also find several 2D crystal structures that may support negative longitudinal piezoelectricity. As another consequence, piezoelectric response in Bi monolayers exhibits a significant nonanalytic behavior, namely, the e_{11} coefficient takes sizably different values (differed by ∼18%) under tensile and compressive strains, a phenomenon not known before and helpful for the development of novel electromechanical devices.

8.
Nano Lett ; 22(22): 8827-8834, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36367457

RESUMO

The quantum spin Hall (QSH) effect has attracted extensive research interest because of the potential applications in spintronics and quantum computing, which is attributable to two conducting edge channels with opposite spin polarization and the quantized electronic conductance of 2e2/h. Recently, 2M-WS2, a new stable phase of transition metal dichalcogenides with a 2M structure showing a layer configuration identical to that of the monolayer 1T' TMDs, was suggested to be a QSH insulator as well as a superconductor with a critical transition temperature of around 8 K. Here, high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES are applied to investigate the electronic and spin structure of the topological surface states (TSS) in the superconducting 2M-WS2. The TSS exhibit characteristic spin-momentum-locking behavior, suggesting the existence of long-sought nontrivial Z2 topological states therein. We expect that 2M-WS2 with coexisting superconductivity and TSS might host the promising Majorana bound states.

9.
J Am Chem Soc ; 144(9): 3949-3956, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35200018

RESUMO

Intertwisted bilayers of two-dimensional (2D) materials can host low-energy flat bands, which offer opportunity to investigate many intriguing physics associated with strong electron correlations. In the existing systems, ultra-flat bands only emerge at very small twist angles less than a few degrees, which poses a challenge for experimental studies and practical applications. Here, we propose a new design principle to achieve low-energy ultra-flat bands with increased twist angles. The key condition is to have a 2D semiconducting material with a large energy difference of band edges controlled by stacking. We show that the interlayer interaction leads to defect-like states under twisting, which forms a flat band in the semiconducting band gap with dispersion strongly suppressed by the large energy barriers in the moiré superlattice even for large twist angles. We explicitly demonstrate our idea in bilayer α-In2Se3 and bilayer InSe. For bilayer α-In2Se3, we show that a twist angle of ∼13.2° is sufficient to achieve the band flatness comparable to that of twist bilayer graphene at the magic angle ∼1.1°. In addition, the appearance of ultra-flat bands here is not sensitive to the twist angle as in bilayer graphene, and it can be further controlled by external gate fields. Our finding provides a new route to achieve ultra-flat bands other than reducing the twist angles and paves the way toward engineering such flat bands in a large family of 2D materials.

10.
Crit Rev Food Sci Nutr ; : 1-21, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36476134

RESUMO

Foodborne pathogenic infection has brought multifaceted issues to human life, leading to an urgent demand for advanced detection technologies. CRISPR/Cas-based biosensors have the potential to address various challenges that exist in conventional assays such as insensitivity, long turnaround time and complex pretreatments. In this perspective, we review the relevant strategies of CRISPR/Cas-assisted diagnostics on foodborne pathogens, focusing on biosensing platforms for foodborne pathogens based on fluorescence, colorimetric, (electro)chemiluminescence, electrochemical, and surface-enhanced Raman scattering detection. It summarizes their detection principles by the clarification of foodborne pathogenic bacteria, fungi, and viruses. Finally, we discuss the current challenges or technical barriers of these methods against broad application, and put forward alternative solutions to improve CRISPR/Cas potential for food safety.

11.
J Sci Food Agric ; 101(13): 5645-5651, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33740265

RESUMO

BACKGROUND: Esters are indispensable aroma compounds and contribute significantly to the fruity aromas in fermented condiments. The ester synthesis activity and pathways of Bacillus licheniformis, Candida etchellsii, and Zygosaccharomyces rouxii, isolated from Chinese horse bean chili-paste (CHCP), were investigated. Chemical buffer models containing esterification and alcoholysis systems inoculated with extracellular extracts of these three strains were established. RESULTS: The ester synthesis activity of C. etchellsii was stronger than that of the other two strains. Zygosaccharomyces rouxii could synthesize acetate esters via esterification, whereas the biosynthesis pathways of B. licheniformis and C. etchellsii were esterification and alcoholysis. Esterification exhibited relatively high activity at pH 4, whereas alcoholysis activity improved with an increase in the pH from 4 to 8. Candida etchellsii could synthesize C6 -C8 of acetate esters, and its activity improved with the number of alcohol carbon atoms. These three strains could synthesize C10 -C18 of ethyl esters. Their ethyl ester synthesis activity decreased with the aliphatic acid carbon number. CONCLUSION: Candida etchellsii has the potential to be used in CHCP fermentation to accumulate esters and improve flavor compared with the other two strains. This research is helpful in explaining the mechanism of ester synthesis in fermented condiments. © 2021 Society of Chemical Industry.


Assuntos
Bacillus licheniformis/metabolismo , Candida/metabolismo , Ésteres/metabolismo , Aromatizantes/metabolismo , Saccharomycetales/metabolismo , Vicia faba/microbiologia , China , Condimentos/análise , Condimentos/microbiologia , Esterificação , Ésteres/análise , Fermentação , Alimentos Fermentados/análise , Alimentos Fermentados/microbiologia , Aromatizantes/química , Vicia faba/química , Vicia faba/metabolismo
12.
J Sci Food Agric ; 101(6): 2371-2379, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33009832

RESUMO

BACKGROUND: Chinese horsebean-chili-paste (CHCP) is a traditional fermented condiment in China, known as 'the soul of Sichuan cuisine'. The horsebean-to-meju phase in its preparation is important for CHCP production and contributes significantly to its taste and odor. In this study, a comprehensive flavor compound profiling analysis of the naturally brewed horsebean meju (NBHM) and the temperature-controlled brewed horsebean meju (TCBHM) was performed with two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOFMS), and the analysis of physicochemical characteristics and free amino acids. Their aroma-active components and characteristic flavor compounds were evaluated. The flavor compounds responsible for differentiating NBHM and TCBHM were also determined based on the Fisher ratio and principal component analysis. RESULTS: The pH and the reducing sugar and amino-acid nitrogen content of NBHM were 5.38, 64.43, and 5.76 g kg-1 , respectively, whereas those of TCBHM were 5.13, 29.20, and 7.43 g kg-1 . A total of 356 volatiles were identified from 2571 compounds, and 257 volatile compounds were identified in NBHM compared to 322 volatiles in TCBHM. These two horsebean mejus (HMs) exhibited a similar proportion profile for 30 aroma-active compounds. Benzoic acid ethyl ester, 4-ethyl-2-methoxy-phenol and argnine were determined to be characteristic flavor components for NBHM, while 1-(2-furanyl)-ethanone, 2,6-dimethyl-pyrazine, threonine, valine and tyrosine were specific to TCBHM. CONCLUSION: Temperature-controlled brewed horsebean meju possessed better physicochemical and flavor characteristics than NBHM. The temperature-controlled brewing technique in CHCP production can be used as a promising alternative to the traditional natural brewing method. © 2020 Society of Chemical Industry.


Assuntos
Manipulação de Alimentos/métodos , Vicia faba/química , China , Condimentos/análise , Fermentação , Alimentos Fermentados/análise , Aromatizantes/química , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Odorantes/análise , Sementes/química , Paladar , Temperatura
13.
Food Microbiol ; 85: 103309, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31500715

RESUMO

The production of Chinese horse bean-chili-paste (CHCP) involves three fermentation phases: chili-to-moromi fermentation (CF) phase, horse bean-to-meju fermentation (HF) phase and moromi-meju mixed fermentation (MF) phase. To understand the microbial dynamics among these three phases and the potential roles of viable microbes for fermentation, microbial community dynamics was investigated by using culture-dependent and culture-independent methods. Furthermore, the capacities of enzyme-producing of the isolates were determined. During the CF phase, reducing sugar content increased from 3.1% to 3.49%, while pH declined from 4.85 to 4.5. The protein content in the HF phase and MF phase reduced sharply from 22.23% to 10.29% and 4.39%-1.19%, respectively. Bacillus sp., Staphylococcus sp., Oceanobacillus sp., Candida sp., Zygosaccharomyces sp. and Aspergillus sp. dominated the CF phase, while Bacillus sp., Candida sp. and Zygosaccharomyces sp. were the dominant microorganisms in both the HF and MF phases. B. amyloliquefaciens, B. methylotrophicus, B. subtilis, B. licheniformis and A. oryzae possessed strong capacities of producing enzymes, i.e. α-amylase, cellulase and xylanase, acid protease and leucine aminopeptidase, and could make a great contribution to CHCP fermentation.


Assuntos
Bactérias/isolamento & purificação , Fermentação , Microbiologia de Alimentos , Glycine max/microbiologia , Microbiota , Biodiversidade , Capsicum/microbiologia , Células-Tronco , Vicia faba/microbiologia
14.
Environ Sci Technol ; 53(21): 12697-12705, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31577126

RESUMO

The development of efficient technologies to prevent the emission of hazardous chlorinated organics from industrial sources without forming harmful byproducts, such as dioxins, is a major challenge in environmental chemistry. Herein, we report a new hydrolytic destruction route for efficient chlorinated organics elimination and demonstrate that phosphoric acid-modified CeO2 (HP-CeO2) can decompose chlorobenzene (CB) without forming polychlorinated congeners under the industry-relevant reaction conditions. The active site and reaction pathway were investigated, and it was found that surface phosphate groups initially react with CB and water to form phenol and HCl, followed by deep oxidation. The high on-stream stability of the catalyst was due to the efficient generation of HCl, which removes Cl from the catalyst surface and ensures O2 activation and therefore deep oxidation of the hydrocarbons. Subsequent density functional theory calculations revealed a distinctly decreased formation energy of an oxygen vacancy at nearest (VO-1) and next-nearest (VO-2) surface sites to the bonded phosphate groups, which likely contributes to the high rate of oxidation observed over the catalyst. Significantly, no dioxins, which are frequently formed in the conventional oxidation route, were observed. This work not only reports an efficient route and corresponding phosphate active site for chlorinated organics elimination but also illustrates that the rational design of the reaction route can solve some of the most important challenges in environmental catalysis.


Assuntos
Fosfatos , Ácidos Fosfóricos , Catálise , Hidrólise , Oxirredução
15.
Nanotechnology ; 29(22): 224003, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29528849

RESUMO

We report the in-plane electric field controlled ferromagnetism of La2/3Sr1/3MnO3 (LSMO) films epitaxially deposited on [Pb(Mg1/3Nb2/3)O3]0.7-(PbTiO3)0.3 (PMN-PT) (001), (011) and (111) single crystal substrates. The in-plane coercivities (H c∥) and remanences of the LSMO films greatly depend on the in-plane electric field applied on the PMN-PT (001) and (011) substrates. The experimental change of H c∥ is consistent with the Stoner-Wohlfarth model and first principle calculation with the electric field varying from -10 to 10 kV cm-1. Moreover, the Curie temperature and anisotropic magnetoresistance of the LSMO films can also be manipulated by an in-plane electric field. Finally, the LSMO/PMN-PT (001) heterostructure is designed to be a new kind of magnetic signal generator with the source of electric field.

16.
Nano Lett ; 17(5): 3035-3039, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28415840

RESUMO

Ultrathin freestanding bismuth film is theoretically predicted to be one kind of two-dimensional topological insulators. Experimentally, the topological nature of bismuth strongly depends on the situations of the Bi films. Film thickness and interaction with the substrate often change the topological properties of Bi films. Using angle-resolved photoemission spectroscopy, scanning tunneling microscopy or spectroscopy and first-principle calculation, the properties of Bi(111) ultrathin film grown on the NbSe2 superconducting substrate have been studied. We find the band structures of the ultrathin film is quasi-freestanding, and one-dimensional edge state exists on Bi(111) film as thin as three bilayers. Superconductivity is also detected on different layers of the film and the pairing potential exhibits an exponential decay with the layer thicknesses. Thus, the topological edge state can coexist with superconductivity, which makes the system a promising platform for exploring Majorana Fermions.

17.
Molecules ; 23(6)2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843477

RESUMO

Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC). Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln), glutamic acid (Glu), aspartic acid (Asp) and asparagines (Asn) were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.


Assuntos
Ácidos Acíclicos/química , Aminoácidos/química , Glycine max/química , Odorantes/análise , Alimentos de Soja/análise , Ácidos Acíclicos/classificação , Ácidos Acíclicos/isolamento & purificação , Aminoácidos/classificação , Aminoácidos/isolamento & purificação , China , Cromatografia Líquida de Alta Pressão , Fermentação , Humanos , Paladar/fisiologia
18.
Langmuir ; 33(12): 2993-2999, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28260373

RESUMO

We report on the low-temperature scanning tunneling microscopy (STM) measurements of the self-assembly of nonplanar 10,10'-dibromo-9,9'-bianthryl (DBBA) molecules on Ag(111) combined with density functional theory (DFT) calculations. DBBA molecules have two enantiomorphous adsorption configurations, from which more chiral structures can be formed. At a low coverage [0.4 monolayer (ML)], DBBA forms racemic netlike islands consisting of molecular chains along ⟨1 2 3̅⟩Ag. Moreover, the gliding between the molecular chains gives rise to chiral windmill-like patterns in the islands. At 0.8 ML, DBBA forms a racemic row phase and a homochiral hexamer phase. The molecular appearance difference between the two coexisted phases and the DFT calculated molecular adsorption configuration reveal a decrease in the molecular dihedral angle of DBBA, which implies an enhancement in the intermolecular interactions via CH···π and halogen bonds. The transition from a racemic packing mode to a homochiral one suggests that the suitability of steric configurations is dominant in the close-packing mode under enhanced intermolecular interactions.

19.
Phys Chem Chem Phys ; 19(24): 16189-16197, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28607989

RESUMO

Perovskite oxide materials have been attracting significant attention due to their rich physical and chemical properties. With its proven stability and bio-compatibility, we suggest the lanthanide-doped perovskite to be a promising material for biological luminescence applications. Here, taking CaTiO3 as a concrete example, we systematically investigate its doping properties using first-principles computational methods. We determine the conditions allowing the growth of CaTiO3 against various competing phases. We obtain the formation energies of various intrinsic point defects in the material. The doping configuration and the charge state of the lanthanide dopants are determined. We find that for heavier elements in the lanthanide family, the substitution at the Ca site is favored under p-type growth conditions and tends to be trivalent, whereas the substitution at the Ti site is favored under n-type growth conditions and tends to be divalent. And for lighter elements in the family, the substitution at the Ca site is more favored for most cases and the dopant is more likely to be trivalent. By tuning the growth conditions, one could control the valence state of the lanthanide dopant, which in turn controls the luminescence spectra. We collect and identify the emission peaks in the infrared biological window, based on which possible doping schemes are suggested for bio-labeling and imaging applications.


Assuntos
Compostos de Cálcio/química , Elementos da Série dos Lantanídeos/química , Óxidos/química , Titânio/química , Espectrofotometria , Termodinâmica
20.
Nano Lett ; 16(7): 4576-82, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27310459

RESUMO

The change of bonding status, typically occurring only in chemical processes, could dramatically alter the material properties. Here, we show that a tunable breaking and forming of a diatomic bond can be achieved through physical means, i.e., by a moderate biaxial strain, in the newly discovered MoN2 two-dimensional (2D) material. On the basis of first-principles calculations, we predict that as the lattice parameter is increased under strain, there exists an isostructural phase transition at which the N-N distance has a sudden drop, corresponding to the transition from a N-N nonbonding state to a N-N single bond state. Remarkably, the bonding change also induces a magnetic phase transition, during which the magnetic moments transfer from the N(2p) sublattice to the Mo(4d) sublattice; meanwhile, the type of magnetic coupling is changed from ferromagnetic to antiferromagnetic. We provide a physical picture for understanding these striking effects. The discovery is not only of great scientific interest in exploring unusual phase transitions in low-dimensional systems, but it also reveals the great potential of the 2D MoN2 material in the nanoscale mechanical, electronic, and spintronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA