Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Pulm Med ; 24(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166904

RESUMO

BACKGROUND: Lung cancer (LC) is one of the most devastating diseases worldwide, there is growing studies confirm the role of impaired lung function in LC susceptibility. Moreover, gut microbiota dysbiosis is associated with LC severity. Whether alterations in gut microbiota and metabolites are associated with long-term lung dysfunction in LC patients remain unclear. Our study aimed to analyze the risk factors in LC patients with impaired pulmonary function based on the characteristics of the gut microbiome and metabolites. METHODS: Fecal samples from 55 LC patients and 28 benign pulmonary nodules patients were collected. Pulmonary ventilation function was graded according to the American Thoracic Society/ European Respiratory Society (ATS/ERS) method. LC patients were divided into 3 groups, including 20 patients with normal lung ventilation, 23 patients with mild pulmonary ventilation dysfunction and 12 patients with moderate or above pulmonary ventilation dysfunction. The fecal samples were analyzed using 16 S rRNA gene amplicon sequencing and metabolomics. RESULTS: The gut microbiome composition between LC patients and benign pulmonary nodules patients presented clearly differences based on Partial Least Squares Discriminant Analysis (PLS-DA). Pulmonary ventilation function was positively correlated with LC tumor stage, the richness and diversity of the gut microbiota in LC patients with moderate or above pulmonary ventilation dysfunction increased significantly, characterized by increased abundance of Subdoligranulum and Romboutsia. The metabolomics analysis revealed 69 differential metabolites, which were mainly enriched in beta-Alanine metabolism, styrene degradation and pyrimidine metabolism pathway. The area under the curve (AUC) combining the gut microbiome and metabolites was 90% (95% CI: 79-100%), indicating that the two species and four metabolites might regarded as biomarkers to assess the prediction of LC patients with impaired pulmonary function. CONCLUSIONS: Our results showed that microbiome and metabolomics analyses provide important candidate to be used as clinically diagnostic biomarkers and therapeutic targets related to lung cancer with impaired pulmonary function.


Assuntos
Microbioma Gastrointestinal , Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Metabolômica/métodos , Fezes , Biomarcadores , RNA Ribossômico 16S/genética
2.
Cell Oncol (Dordr) ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963518

RESUMO

PURPOSE: As an important component of the microenvironment, the gastric microbiota and its metabolites are associated with tumour occurrence, progression, and metastasis. However, the relationship between the gastric microbiota and the development of gastric cancer is unclear. The present study investigated the role of the gastric mucosa microbiome and metabolites as aetiological factors in gastric carcinogenesis. METHODS: Gastric biopsies from different stomach microhabitats (n = 70) were subjected to 16S rRNA gene sequencing, and blood samples (n = 95) were subjected to untargeted metabolome (gas chromatography‒mass spectrometry, GC‒MS) analyses. The datasets were analysed using various bioinformatics approaches. RESULTS: The microbiota diversity and community composition markedly changed during gastric carcinogenesis. High Helicobacter. pylori colonization modified the overall diversity and composition of the microbiota associated with gastritis and cancer in the stomach. Most importantly, analysis of the functional features of the microbiota revealed that nitrate reductase genes were significantly enriched in the tumoral microbiota, while urease-producing genes were significantly enriched in the microbiota of H. pylori-positive patients. A panel of 81 metabolites was constructed to discriminate gastric cancer patients from gastritis patients, and a panel of 15 metabolites was constructed to discriminate H. pylori-positive patients from H. pylori-negative patients. receiver operator characteristic (ROC) curve analysis identified a series of gastric microbes and plasma metabolites as potential biomarkers of gastric cancer. CONCLUSION: The present study identified a series of signatures that may play important roles in gastric carcinogenesis and have the potential to be used as biomarkers for diagnosis and for the surveillance of gastric cancer patients with minimal invasiveness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA