Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Neurol Sci ; 42(12): 5359-5363, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34378097

RESUMO

INTRODUCTION: Mutations of the skeletal muscle sodium channel gene SCN4A are associated with several neuromuscular disorders including hyper/hypokaliemic periodic paralysis, paramyotonia congenita and sodium channel myotonia. These disorders are distinguished from dystrophic myotonias by the absence of progressive weakness and extramuscular systemic involvement. METHODS: We present an Italian family with 2 subjects carrying a p.Asn1180Ile mutation in SCN4A gene showing a peculiar clinical picture characterized by the association of myopathic features and myotonia. RESULTS: The clinical, electromyographic and histological findings of these patients are reported. The possible pathogenicity of the mutation was tested by three different software, all giving positive results. DISCUSSION: This is the first report of a dominant, heterozygous mutation in SCN4A causing a complex phenotype of non-congenital myopathy and myotonic syndrome. We suggest that, in patients with myotonia and myopathy not related to dystrophic myotonias, the sequence analysis of SCN4A gene should be performed.


Assuntos
Doenças Musculares , Miotonia Congênita , Miotonia , Transtornos Miotônicos , Humanos , Mutação/genética , Miotonia/genética , Miotonia Congênita/genética , Transtornos Miotônicos/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Linhagem
2.
Neurol Sci ; 42(12): 5365-5368, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34386887

RESUMO

INTRODUCTION: Myotonic disorders are a group of diseases affecting the muscle, in different ways. Myotonic dystrophy type 1 (DM1) is related to (CTG)n expansion in the 3-untranslated region of the dystrophia myotonica protein kinase (DMPK) gene and is the most frequent and disabling form, causing muscular, visibility, respiratory, and cardiac impairment. Non-dystrophic myotonias (NDMs) affect the skeletal muscle alone. In particular, mutations in the chloride channel (CLCN1) gene cause myotonia congenita (MC), which can have autosomal dominant or recessive inheritance. CASE REPORT: We describe a patient with a family history of asymptomatic or paucisymptomatic myotonia, who presented handgrip myotonia which sharply reduced after mexiletine administration. Molecular analysis showed both a paternally inherited DMPK expansion and a maternally inherited CLCN1 mutation. CONCLUSIONS: Only one other similar case was reported so far; however, the segregation of the two mutations and the characteristics of the muscle were not studied. Since our patient lacked the classical phenotypical and muscle histopathological characteristics of DM1 and showed mild splicing alterations despite a pathogenic DMPK expansion and the nuclear accumulation of toxic RNA, we may speculate that the co-occurrence of a CLCN1 mutation could have attenuated the severity of DM1 phenotype.


Assuntos
Miotonia Congênita , Miotonia , Distrofia Miotônica , Canais de Cloreto/genética , Força da Mão , Humanos , Mutação , Miotonia/genética , Miotonia Congênita/complicações , Miotonia Congênita/genética , Distrofia Miotônica/complicações , Distrofia Miotônica/genética , Miotonina Proteína Quinase
3.
Carcinogenesis ; 40(1): 194-201, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30403777

RESUMO

Amylo-α-1,6-glucosidase,4-α-glucanotransferase (AGL) is an enzyme primarily responsible for glycogen debranching. Germline mutations lead to glycogen storage disease type III (GSDIII). We recently found AGL to be a tumor suppressor in xenograft models of human bladder cancer (BC) and low levels of AGL expression in BC are associated with poor patient prognosis. However, the impact of low AGL expression on the susceptibility of normal bladder to carcinogenesis is unknown. We address this gap by developing a germline Agl knockout (Agl-/-) mouse that recapitulates biochemical and histological features of GSDIII. Agl-/- mice exposed to N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) had a higher BC incidence compared with wild-type mice (Agl+/+). To determine if the increased BC incidence observed was due to decreased Agl expression in the urothelium specifically, we developed a urothelium-specific conditional Agl knockout (Aglcko) mouse using a Uroplakin II-Cre allele. BBN-induced carcinogenesis experiments repeated in Aglcko mice revealed that Aglcko mice had a higher BC incidence than control (Aglfl/fl) mice. RNA sequencing revealed that tumors from Agl-/- mice had 19 differentially expressed genes compared with control mice. An 'Agl Loss' gene signature was developed and found to successfully stratify normal and tumor samples in two BC patient datasets. These results support the role of AGL loss in promoting carcinogenesis and provide a rationale for evaluating Agl expression levels, or Agl Loss gene signature scores, in normal urothelium of populations at risk of BC development such as older male smokers.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio/fisiologia , Neoplasias da Bexiga Urinária/etiologia , Animais , Butilidroxibutilnitrosamina , Engenharia Genética , Sistema da Enzima Desramificadora do Glicogênio/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência de RNA
4.
Mol Ther ; 26(3): 890-901, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29396266

RESUMO

Glycogen storage disease type III (GSDIII) is an autosomal recessive disorder caused by a deficiency of glycogen-debranching enzyme (GDE), which results in profound liver metabolism impairment and muscle weakness. To date, no cure is available for GSDIII and current treatments are mostly based on diet. Here we describe the development of a mouse model of GSDIII, which faithfully recapitulates the main features of the human condition. We used this model to develop and test novel therapies based on adeno-associated virus (AAV) vector-mediated gene transfer. First, we showed that overexpression of the lysosomal enzyme alpha-acid glucosidase (GAA) with an AAV vector led to a decrease in liver glycogen content but failed to reverse the disease phenotype. Using dual overlapping AAV vectors expressing the GDE transgene in muscle, we showed functional rescue with no impact on glucose metabolism. Liver expression of GDE, conversely, had a direct impact on blood glucose levels. These results provide proof of concept of correction of GSDIII with AAV vectors, and they indicate that restoration of the enzyme deficiency in muscle and liver is necessary to address both the metabolic and neuromuscular manifestations of the disease.


Assuntos
Terapia Genética , Sistema da Enzima Desramificadora do Glicogênio/genética , Doença de Depósito de Glicogênio Tipo III/genética , Doença de Depósito de Glicogênio Tipo III/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , Fenótipo , Animais , Biomarcadores , Glicemia , Dependovirus/genética , Modelos Animais de Doenças , Ativação Enzimática , Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Glicogênio/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo III/diagnóstico , Doença de Depósito de Glicogênio Tipo III/terapia , Hepatócitos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Especificidade de Órgãos
5.
Hum Mutat ; 39(9): 1273-1283, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29935101

RESUMO

Myotonia congenita (MC) is a skeletal-muscle hyperexcitability disorder caused by loss-of-function mutations in the ClC-1 chloride channel. Mutations are scattered over the entire sequence of the channel protein, with more than 30 mutations located in the poorly characterized cytosolic C-terminal domain. In this study, we characterized, through patch clamp, seven ClC-1 mutations identified in patients affected by MC of various severities and located in the C-terminal region. The p.Val829Met, p.Thr832Ile, p.Val851Met, p.Gly859Val, and p.Leu861Pro mutations reside in the CBS2 domain, while p.Pro883Thr and p.Val947Glu are in the C-terminal peptide. We showed that the functional properties of mutant channels correlated with the clinical phenotypes of affected individuals. In addition, we defined clusters of ClC-1 mutations within CBS2 and C-terminal peptide subdomains that share the same functional defect: mutations between 829 and 835 residues and in residue 883 induced an alteration of voltage dependence, mutations between 851 and 859 residues, and in residue 947 induced a reduction of chloride currents, whereas mutations on 861 residue showed no obvious change in ClC-1 function. This study improves our understanding of the mechanisms underlying MC, sheds light on the role of the C-terminal region in ClC-1 function, and provides information to develop new antimyotonic drugs.


Assuntos
Canais de Cloreto/genética , Análise Mutacional de DNA , Mutação/genética , Miotonia Congênita/genética , Adolescente , Adulto , Aminoácidos/genética , Feminino , Humanos , Ativação do Canal Iônico/genética , Masculino , Pessoa de Meia-Idade , Miotonia Congênita/tratamento farmacológico , Miotonia Congênita/fisiopatologia , Técnicas de Patch-Clamp , Peptídeos/genética , Domínios Proteicos/genética
6.
Biochim Biophys Acta ; 1842(11): 2318-28, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25092169

RESUMO

Glycogen storage disease type III is an autosomal recessive disease characterized by a deficiency in the glycogen debranching enzyme, encoded by AGL. Essential features of this disease are hepatomegaly, hypoglycemia, hyperlipidemia, and growth retardation. Progressive skeletal myopathy, neuropathy, and/or cardiomyopathy become prominent in adults. Currently, there is no available cure. We generated an Agl knockout mouse model by deletion of the carboxy terminus of the protein, including the carboxy end of the glucosidase domain and the glycogen-binding domain. Agl knockout mice presented serious hepatomegaly, but we did not observe signs of cirrhosis or adenomas. In affected tissues, glycogen storage was higher than in wild-type mice, even in the central nervous system which has never been tested in GSDIII patients. The biochemical findings were in accordance with histological data, which clearly documented tissue impairment due to glycogen accumulation. Indeed, electron microscopy revealed the disruption of contractile units due to glycogen infiltrations. Furthermore, adult Agl knockout animals appeared less prompt to move, and they exhibited kyphosis. Three-mo-old Agl knockout mice could not run, and adult mice showed exercise intolerance. In addition, older affected animals exhibited an accelerated respiratory rate even at basal conditions. This observation was correlated with severe glycogen accumulation in the diaphragm. Diffuse glycogen deposition was observed in the tongues of affected mice. Our results demonstrate that this Agl knockout mouse is a reliable model for human glycogenosis type III, as it recapitulates the essential phenotypic features of the disease.

7.
Mol Biol Rep ; 41(5): 2865-74, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24452722

RESUMO

Mutations in the chloride channel gene CLCN1 cause the allelic disorders Thomsen (dominant) and Becker (recessive) myotonia congenita (MC). The encoded protein, ClC-1, is the primary channel that mediates chloride (Cl-) conductance in skeletal muscle. Mutations in CLCN1 lower the channel's threshold voltage, leading to spontaneous action potentials that are not coupled to neuromuscular transmission and resulting in myotonia. Over 120 mutations in CLCN1 have been described, 10% of which are splicing defects. Biological specimens suitable for RNA extraction are not always available, but obtaining genomic DNA for analysis is easy and non-invasive. This is the first study to evaluate the pathogenic potential of novel splicing mutations using the minigene approach, which is based on genomic DNA analysis. Splicing mutations accounted for 23% of all pathogenic variants in our cohort of MC patients. Four were heterozygous mutations in four unrelated individuals, belonging to this cohort: c.563G>T in exon 5; c.1169-5T>G in intron 10; c.1251+1G>A in intron 11, and c.1931-2A>G in intron 16. These variants were expressed in HEK 293 cells, and aberrant splicing was verified by in vitro transcription and sequencing of the cDNA. Our findings confirm the need to further investigate the nature of rearrangements associated with this class of mutations and their effects on mature transcripts. In particular, splicing mutations predicted to generate in-frame transcripts may generate out-of-frame mRNA transcripts that do not produce functional ClC-1. Clinically, incomplete molecular evaluation could lead to delayed or faulty diagnosis.


Assuntos
Canais de Cloreto/genética , Técnicas In Vitro , Mutação , Miotonia Congênita/genética , Sítios de Splice de RNA , Splicing de RNA , Adolescente , Adulto , Alelos , Criança , Análise Mutacional de DNA , Feminino , Ordem dos Genes , Humanos , Masculino , Adulto Jovem
8.
Front Neurol ; 15: 1359479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426167

RESUMO

Introduction: CACNA1S related congenital myopathy is an emerging recently described entity. In this report we describe 2 sisters with mutations in the CACNA1S gene and the novel phenotype of congenital myopathy and infantile onset episodic weakness. Clinical description: Both sisters had neonatal onset hypotonia, muscle weakness, and delayed walking. Episodic weakness started in infancy and continued thereafter, provoked mostly by cold exposure. Muscle imaging revealed fat replacement of gluteus maximus muscles. Next generation sequencing found the missense p.Cys944Tyr variant and the novel splicing variant c.3526-2A>G in CACNA1S. Minigene assay revealed the splicing variant caused skipping of exon 28 from the transcript, potentially affecting protein folding and/or voltage dependent activation. Conclusion: This novel phenotype supports the notion that there are age related differences in the clinical expression of CACNA1S gene mutations. This expands our understanding of mutations located in regions of the CACNA1S outside the highly conserved S4 segment, where most mutations thus far have been identified.

10.
J Hum Genet ; 57(3): 170-5, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22089644

RESUMO

Glycogen storage disease type III (GSD III) is an autosomal recessive inborn error of metabolism caused by mutations in the glycogen debranching enzyme amylo-1,6-glucosidase gene, which is located on chromosome 1p21.2. GSD III is characterized by the storage of structurally abnormal glycogen, termed limit dextrin, in both skeletal and cardiac muscle and/or liver, with great variability in resultant organ dysfunction. The spectrum of AGL gene mutations in GSD III patients depends on ethnic group. The most prevalent mutations have been reported in the North African Jewish population and in an isolate such as the Faroe Islands. Here, we present the molecular and biochemical analyses of 22 Tunisian GSD III patients. Molecular analysis revealed three novel mutations: nonsense (Tyr1148X) and two deletions (3033_3036del AATT and 3216_3217del GA) and five known mutations: three nonsense (R864X, W1327X and W255X), a missense (R524H) and an acceptor splice-site mutation (IVS32-12A>G). Each mutation is associated to a specific haplotype. This is the first report of screening for mutations of AGL gene in the Tunisian population.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio/genética , Doença de Depósito de Glicogênio Tipo III/diagnóstico , Doença de Depósito de Glicogênio Tipo III/genética , Adolescente , População Negra/genética , Criança , Pré-Escolar , Feminino , Haplótipos , Humanos , Lactente , Masculino , Mutação , Polimorfismo de Nucleotídeo Único , Tunísia
11.
Front Neurol ; 13: 845383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081873

RESUMO

Non-dystrophic myotonias (NDM) encompass chloride and sodium channelopathy. Mutations in CLCN1 lead to either the autosomal dominant form or the recessive form of myotonia congenita (MC). The main symptom is stiffness worsening after rest and improving by physical exercise. Patients with recessive mutations often show muscle hypertrophy, and transient weakness mostly in their lower limbs. Mutations in SCN4A can lead to Hyper-, Hypo- or Normo-kalemic Periodic Paralysis or to different forms of myotonia (Paramyotonia Congenita-PMC and Sodium Channel Myotonia-SCM and severe neonatal episodic laryngospasm-SNEL). SCM often presents facial muscle stiffness, cold sensitivity, and muscle pain, whereas myotonia worsens in PMC patients with the repetition of the muscle activity and cold. Patients affected by chloride or sodium channelopathies may show similar phenotypes and symptoms, making the diagnosis more difficult to reach. Herein we present a woman in whom sodium and chloride channelopathies coexist yielding a complex phenotype with features typical of both MC and PMC. Disease onset was in the second decade with asthenia, weakness, warm up and limb stiffness, and her symptoms had been worsening through the years leading to frequent heavy retrosternal compression, tachycardia, stiffness, and symmetrical pain in her lower limbs. She presented severe lid lag myotonia, a hypertrophic appearance at four limbs and myotonic discharges at EMG. Her symptoms have been triggered by exposure to cold and her daily life was impaired. All together, clinical signs and instrumental data led to the hypothesis of PMC and to the administration of mexiletine, then replaced by acetazolamide because of gastrointestinal side effects. Analysis of SCN4A revealed a new variant, p.Glu1607del. Nonetheless the severity of myotonia in the lower limbs and her general stiffness led to hypothesize that the impairment of sodium channel, Nav1.4, alone could not satisfactorily explain the phenotype and a second genetic "factor" was hypothesized. CLCN1 was targeted, and p.Met485Val was detected in homozygosity. This case highlights that proper identification of signs and symptoms by an expert neurologist is crucial to target a successful genetic diagnosis and appropriate therapy.

12.
Front Neurol ; 11: 255, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411069

RESUMO

Sodium channel myotonia is a form of muscle channelopathy due to mutations that affect the Nav1.4 channel. We describe seven families with a series of symptoms ranging from asymptomatic to clearly myotonic signs that have in common two novel mutations, p.Ile215Thr and p.Gly241Val, in the first domain of the Nav1.4 channel. The families described have been clinically and genetically evaluated. p.Ile215Thr and p.Gly241Val lie, respectively, on extracellular and intracellular loops of the first domain of the Nav1.4 channel. We assessed that the p.Ile215Thr mutation can be related to a founder effect in people from Southern Italy. Electrophysiological evaluation of the channel function showed that the voltage dependence of the activation for both the mutant channels was significantly shifted toward hyperpolarized potentials (Ile215Thr: -28.6 ± 1.5 mV and Gly241Val: -30.2 ± 1.3 mV vs. WT: -18.5 ± 1.3 mV). The slow inactivation was also significantly affected, whereas fast inactivation showed a different behavior in the two mutants. We characterized two novel mutations of the SCN4A gene expanding the knowledge about genetics of mild forms of myotonia, and we present, to our knowledge, the first homozygous patient with sodium channel myotonia.

13.
Hum Mutat ; 29(2): 258-66, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17994539

RESUMO

Limb girdle muscular dystrophies (LGMD) are characterized by genetic and clinical heterogeneity: seven autosomal dominant and 12 autosomal recessive loci have so far been identified. Aims of this study were to evaluate the relative proportion of the different types of LGMD in 181 predominantly Italian LGMD patients (representing 155 independent families), to describe the clinical pattern of the different forms, and to identify possible correlations between genotype, phenotype, and protein expression levels, as prognostic factors. Based on protein data, the majority of probands (n=72) presented calpain-3 deficiency; other defects were as follows: dysferlin (n=31), sarcoglycans (n=32), alpha-dystroglycan (n=4), and caveolin-3 (n=2). Genetic analysis identified 111 different mutations, including 47 novel ones. LGMD relative frequency was as follows: LGMD1C (caveolin-3) 1.3%; LGMD2A (calpain-3) 28.4%; LGMD2B (dysferlin) 18.7%; LGMD2C (gamma-sarcoglycan) 4.5%; LGMD2D (alpha-sarcoglycan) 8.4%; LGMD2E (beta-sarcoglycan) 4.5%; LGMD2F (delta-sarcoglycan) 0.7%; LGMD2I (Fukutin-related protein) 6.4%; and undetermined 27.1%. Compared to Northern European populations, Italian patients are less likely to be affected with LGMD2I. The order of decreasing clinical severity was: sarcoglycanopathy, calpainopathy, dysferlinopathy, and caveolinopathy. LGMD2I patients showed both infantile noncongenital and mild late-onset presentations. Age at disease onset correlated with variability of genotype and protein levels in LGMD2B. Truncating mutations determined earlier onset than missense substitutions (20+/-5.1 years vs. 36.7+/-11.1 years; P=0.0037). Similarly, dysferlin absence was associated with an earlier onset when compared to partial deficiency (20.2+/-standard deviation [SD] 5.2 years vs. 28.4+/-SD 11.2 years; P=0.014).


Assuntos
Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , População Branca/genética , Adolescente , Adulto , Idade de Início , Sequência de Aminoácidos , Calpaína/química , Calpaína/genética , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Genes Dominantes , Testes Genéticos , Genótipo , Humanos , Lactente , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Distrofia Muscular do Cíngulo dos Membros/classificação , Distrofia Muscular do Cíngulo dos Membros/epidemiologia , Fenótipo
14.
Biochim Biophys Acta Mol Basis Dis ; 1864(10): 3407-3417, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30076962

RESUMO

Glycogen disease type III (GSDIII), a rare incurable autosomal recessive disorder due to glycogen debranching enzyme deficiency, presents with liver, heart and skeletal muscle impairment, hepatomegaly and ketotic hypoglycemia. Muscle weakness usually worsens to fixed myopathy and cardiac involvement may present in about half of the patients during disease. Management relies on careful follow-up of symptoms and diet. No common agreement was reached on sugar restriction and treatment in adulthood. We administered two dietary regimens differing in their protein and carbohydrate content, high-protein (HPD) and high-protein/glucose-free (GFD), to our mouse model of GSDIII, starting at one month of age. Mice were monitored, either by histological, biochemical and molecular analysis and motor functional tests, until 10 months of age. GFD ameliorated muscle performance up to 10 months of age, while HPD showed little improvement only in young mice. In GFD mice, a decreased muscle glycogen content and fiber vacuolization was observed, even in aged animals indicating a protective role of proteins against skeletal muscle degeneration, at least in some districts. Hepatomegaly was reduced by about 20%. Moreover, the long-term administration of GFD did not worsen serum parameters even after eight months of high-protein diet. A decreased phosphofructokinase and pyruvate kinase activities and an increased expression of Krebs cycle and gluconeogenesis genes were seen in the liver of GFD fed mice. Our data show that the concurrent use of proteins and a strictly controlled glucose supply could reduce muscle wasting, and indicate a better metabolic control in mice with a glucose-free/high-protein diet.


Assuntos
Dieta Rica em Proteínas/métodos , Doença de Depósito de Glicogênio Tipo III/dietoterapia , Hepatomegalia/dietoterapia , Músculo Esquelético/fisiopatologia , Animais , Ciclo do Ácido Cítrico , Dieta Rica em Proteínas e Pobre em Carboidratos/métodos , Modelos Animais de Doenças , Feminino , Doença de Depósito de Glicogênio Tipo III/metabolismo , Doença de Depósito de Glicogênio Tipo III/fisiopatologia , Hepatomegalia/metabolismo , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Fosfofrutoquinases/metabolismo , Condicionamento Físico Animal , Piruvato Quinase/metabolismo , Resultado do Tratamento
15.
Neurophysiol Clin ; 47(3): 247-252, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28153715

RESUMO

OBJECTIVE: To investigate the cause of transient weakness in myotonia congenita (MC) and the mechanism of action of mexiletine in reducing weakness. METHODS: The changes in neuromuscular excitability produced by 1min of maximal voluntary contractions (MVC) were measured on the amplitude of compound muscle action potentials (CMAP) in two patients with either recessive or dominant MC, compared to control values obtained in 20 healthy subjects. Measurements were performed again in MC patients after mexiletine therapy. RESULTS: Transient reduction in maximal CMAP amplitude lasting several minutes after MVC was evident in MC patients, whereas no change was observed in controls. Mexiletine efficiently reduced this transient CMAP depression in both patients. DISCUSSION: Transient CMAP depression following sustained MVC may represent the electrophysiological correlate of the weakness clinically experienced by the patients. In MC, the low chloride conductance could induce self-sustaining action potentials after MVC, determining progressive membrane depolarization and a loss of excitability of muscle fibers, thus resulting in transient paresis. Mexiletine may prevent conduction block due to excessive membrane depolarization, thus reducing the transient CMAP depression following sustained MVC.


Assuntos
Mexiletina/uso terapêutico , Contração Muscular , Debilidade Muscular/fisiopatologia , Músculo Esquelético/fisiopatologia , Miotonia Congênita/tratamento farmacológico , Miotonia Congênita/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Debilidade Muscular/tratamento farmacológico , Músculo Esquelético/efeitos dos fármacos , Estimulação Elétrica Nervosa Transcutânea , Resultado do Tratamento
16.
Neurology ; 86(22): 2100-8, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27164696

RESUMO

OBJECTIVE: We performed a clinical, functional, and pharmacologic characterization of the novel p.P1158L Nav1.4 mutation identified in a young girl presenting a severe myotonic phenotype. METHODS: Wild-type hNav1.4 channel and P1158L mutant were expressed in tsA201 cells for functional and pharmacologic studies using patch-clamp. RESULTS: The patient shows pronounced myotonia, slowness of movements, and generalized muscle hypertrophy. Because of general discomfort with mexiletine, she was given flecainide with satisfactory response. In vitro, mutant channels show a slower current decay and a rightward shift of the voltage dependence of fast inactivation. The voltage dependence of activation and slow inactivation were not altered. Mutant channels were less sensitive to mexiletine, whereas sensitivity to flecainide was not altered. The reduced inhibition of mutant channels by mexiletine was also observed using clinically relevant drug concentrations in a myotonic-like condition. CONCLUSIONS: Clinical phenotype and functional alterations of P1158L support the diagnosis of myotonia permanens. Impairment of fast inactivation is consistent with the possible role of the channel domain III S4-S5 loop in the inactivation gate docking site. The reduced sensitivity of P1158L to mexiletine may have contributed to the unsatisfactory response of the patient. The success of flecainide therapy underscores the usefulness of in vitro functional studies to help in the choice of the best drug for each individual.


Assuntos
Mutação , Miotonia Congênita/tratamento farmacológico , Miotonia Congênita/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico , Linhagem Celular , Criança , Diagnóstico Diferencial , Feminino , Flecainida/farmacologia , Flecainida/uso terapêutico , Humanos , Mexiletina/efeitos adversos , Mexiletina/farmacologia , Mexiletina/uso terapêutico , Miotonia Congênita/diagnóstico , Miotonia Congênita/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Testes Farmacogenômicos/métodos , Medicina de Precisão/métodos , Pesquisa Translacional Biomédica , Bloqueadores do Canal de Sódio Disparado por Voltagem/efeitos adversos , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
17.
J Neurol Sci ; 318(1-2): 65-71, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22521272

RESUMO

Myotonia congenita is an autosomal dominantly or recessively inherited muscle disorder causing impaired muscle relaxation and variable degrees of permanent muscle weakness, abnormal currents linked to the chloride channel gene (CLCN1) encoding the chloride channel on skeletal muscle membrane. We describe 12 novel mutations: c.1606G>C (p.Val536Leu), c.2533G>A (p.Gly845Ser), c.2434C>T (p.Gln812X), c.1499T>G (p.E500X), c.1012C>T (p.Arg338X), c.2403+1G>A, c.2840T>A (p.Val947Glu), c.1598C>T (p.Thr533Ile), c.1110delC, c.590T>A (p.Ile197Arg), c.2276insA Fs800X, c.490T>C (p.Trp164Arg) in 22 unrelated Italian patients. To further understand the functional outcome of selected missense mutations (p.Trp164Arg, p.Ile197Arg and p.Gly845Ser, and the previously reported p.Gly190Ser) we characterized the biophysical properties of mutant ion channels in tsA cell model. In the physiological range of muscle membrane potential, all the tested mutations, except p.Gly845Ser, reduced the open probability, increased the fast and slow components of deactivation and affected pore properties. This suggests a decrease in macroscopic chloride currents impairing membrane potential repolarization and causing hyperexcitability in muscle membranes. Detailed clinical features are given of the 8 patients characterized by cell electrophysiology. These data expand the spectrum of CLCN1 mutations and may contribute to genotype-phenotype correlations. Furthermore, we provide insights into the fine protein structure of ClC-1 and its physiological role in the maintenance of membrane resting potential.


Assuntos
Canais de Cloreto/genética , Predisposição Genética para Doença/genética , Mutação de Sentido Incorreto/genética , Miotonia Congênita/genética , Adolescente , Adulto , Idoso , Linhagem Celular , Membrana Celular/genética , Membrana Celular/patologia , Criança , Condutividade Elétrica , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Miotonia Congênita/patologia , Miotonia Congênita/fisiopatologia , Técnicas de Patch-Clamp , Adulto Jovem
18.
Muscle Nerve ; 30(3): 366-74, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15318348

RESUMO

Dysferlin plays an essential role in the muscle repair machinery, and its deficiency is associated with limb-girdle muscular dystrophy type 2B and with two different distal myopathies (Miyoshi myopathy and distal anterior compartment myopathy). Our aims were to characterize the pattern of dysferlin expression during myogenic cell differentiation and to assess possible differentially spliced isoforms of the DYSF gene. Human primary myogenic cells express a splice variant of dysferlin mRNA lacking exon 17 (Delta17), together with full-length dysferlin mRNA. Real-time polymerase chain reaction analysis of human myoblasts, myotubes, and normal skeletal muscle showed that Delta17 expression inversely correlates with muscle differentiation. Indeed, Delta17 is progressively replaced by the wild type as myoblast fusion proceeds, and it disappears in adult skeletal muscle. Conversely, Delta17 is the predominant dysferlin variant in mature peripheral nerve. Our findings suggest that the two proteins play different roles in myogenic cell differentiation and that dysferlin function in peripheral nerve might be accomplished by this novel isoform.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Mioblastos Esqueléticos/metabolismo , Nervo Isquiático/metabolismo , Processamento Alternativo , Diferenciação Celular/genética , Células Cultivadas , Disferlina , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética , Humanos , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Proteínas Musculares/biossíntese , Proteínas Musculares/genética , Mioblastos Esqueléticos/citologia , Especificidade de Órgãos/genética , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Nervo Isquiático/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA