Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Cell ; 184(16): 4237-4250.e19, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34297924

RESUMO

The organization of genomic DNA into defined nucleosomes has long been viewed as a hallmark of eukaryotes. This paradigm has been challenged by the identification of "minimalist" histones in archaea and more recently by the discovery of genes that encode fused remote homologs of the four eukaryotic histones in Marseilleviridae, a subfamily of giant viruses that infect amoebae. We demonstrate that viral doublet histones are essential for viral infectivity, localize to cytoplasmic viral factories after virus infection, and ultimately are found in the mature virions. Cryogenic electron microscopy (cryo-EM) structures of viral nucleosome-like particles show strong similarities to eukaryotic nucleosomes despite the limited sequence identify. The unique connectors that link the histone chains contribute to the observed instability of viral nucleosomes, and some histone tails assume structural roles. Our results further expand the range of "organisms" that require nucleosomes and suggest a specialized function of histones in the biology of these unusual viruses.


Assuntos
Vírus de DNA/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Amoeba/virologia , Corantes Fluorescentes/metabolismo , Histonas/química , Modelos Moleculares , Proteômica , Vírion/metabolismo
2.
Cell ; 158(1): 98-109, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24995981

RESUMO

Histone variants play crucial roles in gene expression, genome integrity, and chromosome segregation. We report that the four H2A variants in Arabidopsis define different genomic features, contributing to overall genomic organization. The histone variant H2A.W marks heterochromatin specifically and acts in synergy with heterochromatic marks H3K9me2 and DNA methylation to maintain transposon silencing. In vitro, H2A.W enhances chromatin condensation by promoting fiber-to-fiber interactions via its conserved C-terminal motif. In vivo, H2A.W is required for heterochromatin condensation, demonstrating that H2A.W plays critical roles in heterochromatin organization. Similarities in conserved motifs between H2A.W and another H2A variant in metazoans suggest that plants and animals share common mechanisms for heterochromatin condensation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , Heterocromatina/metabolismo , Histonas/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Metilação de DNA , Elementos de DNA Transponíveis , Estudo de Associação Genômica Ampla , Histonas/química , Histonas/genética , Dados de Sequência Molecular , Alinhamento de Sequência
3.
Mol Cell ; 81(24): 4994-5006.e5, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34919819

RESUMO

PARP1 is a key player in the response to DNA damage and is the target of clinical inhibitors for the treatment of cancers. Binding of PARP1 to damaged DNA leads to activation wherein PARP1 uses NAD+ to add chains of poly(ADP-ribose) onto itself and other nuclear proteins. PARP1 also binds abundantly to intact DNA and chromatin, where it remains enzymatically inactive. We show that intact DNA makes contacts with the PARP1 BRCT domain, which was not previously recognized as a DNA-binding domain. This binding mode does not result in the concomitant reorganization and activation of the catalytic domain. We visualize the BRCT domain bound to nucleosomal DNA by cryogenic electron microscopy and identify a key motif conserved from ancestral BRCT domains for binding phosphates on DNA and phospho-peptides. Finally, we demonstrate that the DNA-binding properties of the BRCT domain contribute to the "monkey-bar mechanism" that mediates DNA transfer of PARP1.


Assuntos
Dano ao DNA , DNA/metabolismo , Nucleossomos/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Animais , Células Cultivadas , DNA/genética , DNA/ultraestrutura , Fibroblastos/enzimologia , Humanos , Camundongos , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Nucleossomos/genética , Nucleossomos/ultraestrutura , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/ultraestrutura , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
4.
Nature ; 577(7790): 426-431, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31775157

RESUMO

The organization of genomic DNA into nucleosomes profoundly affects all DNA-related processes in eukaryotes. The histone chaperone known as 'facilitates chromatin transcription' (FACT1) (consisting of subunits SPT16 and SSRP1) promotes both disassembly and reassembly of nucleosomes during gene transcription, DNA replication and DNA repair2. However, the mechanism by which FACT causes these opposing outcomes is unknown. Here we report two cryo-electron-microscopic structures of human FACT in complex with partially assembled subnucleosomes, with supporting biochemical and hydrogen-deuterium exchange data. We find that FACT is engaged in extensive interactions with nucleosomal DNA and all histone variants. The large DNA-binding surface on FACT appears to be protected by the carboxy-terminal domains of both of its subunits, and this inhibition is released by interaction with H2A-H2B, allowing FACT-H2A-H2B to dock onto a complex containing DNA and histones H3 and H4 (ref. 3). SPT16 binds nucleosomal DNA and tethers H2A-H2B through its carboxy-terminal domain by acting as a placeholder for DNA. SSRP1 also contributes to DNA binding, and can assume two conformations, depending on whether a second H2A-H2B dimer is present. Our data suggest a compelling mechanism for how FACT maintains chromatin integrity during polymerase passage, by facilitating removal of the H2A-H2B dimer, stabilizing intermediate subnucleosomal states and promoting nucleosome reassembly. Our findings reconcile discrepancies regarding the many roles of FACT and underscore the dynamic interactions between histone chaperones and nucleosomes.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo , Microscopia Crioeletrônica , DNA/química , DNA/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
5.
Mol Cell ; 69(1): 36-47.e7, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29249653

RESUMO

Recent integrative epigenome analyses highlight the importance of functionally distinct chromatin states for accurate cell function. How these states are established and maintained is a matter of intense investigation. Here, we present evidence for DNA damage as an unexpected means to shape a protective chromatin environment at regions of recurrent replication stress (RS). Upon aberrant fork stalling, DNA damage signaling and concomitant H2AX phosphorylation coordinate the FACT-dependent deposition of macroH2A1.2, a histone variant that promotes DNA repair by homologous recombination (HR). MacroH2A1.2, in turn, facilitates the accumulation of the tumor suppressor and HR effector BRCA1 at replication forks to protect from RS-induced DNA damage. Consequently, replicating primary cells steadily accrue macroH2A1.2 at fragile regions, whereas macroH2A1.2 loss in these cells triggers DNA damage signaling-dependent senescence, a hallmark of RS. Altogether, our findings demonstrate that recurrent DNA damage contributes to the chromatin landscape to ensure the epigenomic integrity of dividing cells.


Assuntos
Carcinogênese/genética , Cromatina/genética , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Histonas/genética , Recombinação Homóloga/genética , Proteína BRCA1/metabolismo , Divisão Celular/genética , Células Cultivadas , Senescência Celular/genética , Instabilidade Genômica/fisiologia , Humanos , Transdução de Sinais/genética
6.
Trends Biochem Sci ; 46(1): 41-50, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32917506

RESUMO

Over 85% of all genomic DNA in eukaryotes is organized in arrays of nucleosomes, the basic organizational principle of chromatin. The tight interaction of DNA with histones represents a significant barrier for all DNA-dependent machineries. This is in part overcome by enzymes, termed ATP-dependent remodelers, that are recruited to nucleosomes at defined locations and modulate their structure. There are several different classes of remodelers, and all use specific nucleosome features to bind to and alter nucleosomes. This review highlights and summarizes areas of interactions with the nucleosome that allow remodeling to occur.


Assuntos
DNA/metabolismo , Nucleossomos/metabolismo , RNA/metabolismo , Reparo do DNA , Replicação do DNA
7.
Mol Cell ; 65(4): 581-582, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28212744

RESUMO

In this issue of Molecular Cell, Liu and Kraus (2017) demonstrate that the pioneer transcription factor Sox2 requires PARP1 to bind to a subset of its recognition motifs, which are located within nucleosomes across the genome.


Assuntos
Nucleossomos , Fatores de Transcrição SOXB1/genética , Genoma
8.
Proc Natl Acad Sci U S A ; 119(11): e2121979119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35259019

RESUMO

SignificancePARP is an important target in the treatment of cancers, particularly in patients with breast, ovarian, or prostate cancer that have compromised homologous recombination repair (i.e., BRCA-/-). This review about inhibitors of PARP (PARPi) is for readers interested in the development of next-generation drugs for the treatment of cancer, providing insights into structure-activity relationships, in vitro vs. in vivo potency, PARP trapping, and synthetic lethality.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteína BRCA1/genética , Proteína BRCA2/genética , Reparo do DNA , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Moleculares , Estrutura Molecular , Mutação , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Mutações Sintéticas Letais
9.
Nat Rev Mol Cell Biol ; 13(7): 436-47, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22722606

RESUMO

The compaction of genomic DNA into chromatin has profound implications for the regulation of key processes such as transcription, replication and DNA repair. Nucleosomes, the repeating building blocks of chromatin, vary in the composition of their histone protein components. This is the result of the incorporation of variant histones and post-translational modifications of histone amino acid side chains. The resulting changes in nucleosome structure, stability and dynamics affect the compaction of nucleosomal arrays into higher-order structures. It is becoming clear that chromatin structures are not nearly as uniform and regular as previously assumed. This implies that chromatin structure must also be viewed in the context of specific biological functions.


Assuntos
Cromatina/química , DNA/química , Nucleossomos/química , Aminoácidos/química , Animais , Reparo do DNA , Histonas/química , Humanos , Modelos Moleculares , Conformação Molecular , Conformação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
10.
Cell ; 138(1): 22-4, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19596232

RESUMO

The properties of centromeric nucleosomes have been the subject of considerable debate and controversy. Furuyama and Henikoff (2009) now provide surprising evidence that centromeric nucleosomes wrap DNA in an orientation that is opposite to that of canonical nucleosomes.


Assuntos
Centrômero/química , DNA/química , Nucleossomos/química , Animais , DNA/metabolismo , Drosophila/química , Proteínas de Drosophila/metabolismo , Histonas/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico
11.
Nucleic Acids Res ; 50(7): 3958-3973, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35349716

RESUMO

Dual-inhibitors of PARP1 and PARP2 are promising anti-cancer drugs. In addition to blocking PARP1&2 enzymatic activity, PARP inhibitors also extend the lifetime of DNA damage-induced PARP1&2 foci, termed trapping. Trapping is important for the therapeutic effects of PARP inhibitors. Using live-cell imaging, we found that PARP inhibitors cause persistent PARP2 foci by switching the mode of PARP2 recruitment from a predominantly PARP1- and PAR-dependent rapid exchange to a WGR domain-mediated stalling of PARP2 on DNA. Specifically, PARP1-deletion markedly reduces but does not abolish PARP2 foci. The residual PARP2 foci in PARP1-deficient cells are DNA-dependent and abrogated by the R140A mutation in the WGR domain. Yet, PARP2-R140A forms normal foci in PARP1-proficient cells. In PARP1-deficient cells, PARP inhibitors - niraparib, talazoparib, and, to a lesser extent, olaparib - enhance PARP2 foci by preventing PARP2 exchange. This trapping of PARP2 is independent of auto-PARylation and is abolished by the R140A mutation in the WGR domain and the H415A mutation in the catalytic domain. Taken together, we found that PARP inhibitors trap PARP2 by physically stalling PARP2 on DNA via the WGR-DNA interaction while suppressing the PARP1- and PAR-dependent rapid exchange of PARP2.


Assuntos
Dano ao DNA , Inibidores de Poli(ADP-Ribose) Polimerases , DNA/metabolismo , Reparo do DNA , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli ADP Ribosilação , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
12.
Biochemistry ; 62(16): 2382-2390, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37531469

RESUMO

PARP1, upon binding to damaged DNA, is activated to perform poly ADP-ribosylation (PARylation) on itself and other proteins, which leads to relaxation of chromatin and recruitment of DNA repair factors. HPF1 was recently discovered as a protein cofactor of PARP1 that directs preferential PARylation of histones over other targets by contributing to and altering the PARP1 active site. Inhibitors of PARP1 (PARPi) are used in the treatment of BRCA-/- cancers, but the basis for their potency in cells, especially in the context of HPF1, is not fully understood. Here, we demonstrate the simple one-step association for eight different PARPi to PARP1 with measured rates of association (kon) of 0.8-6 µM-1 s-1. We find only minor differences in these on rates when comparing PARP1 with the PARP1-HPF1 complex. By characterizing the rates of dissociation (koff) and the binding constants (KD) for two more recently discovered PARPi, we find, for example, that saruparib has a half-life for dissociation of 22.5 h and fluzoparib has higher affinity for PARP1 in the presence of HPF1, just like the structurally related compound olaparib. By using the measured KD and kon to calculate koff, we find that the potency of PARPi in cells correlates best with the koff from the PARP1-HPF1 complex. Our data suggest that dissociation of a drug compound from the PARP1-HPF1 complex should be the parameter of choice for guiding the development of next-generation PARPi.


Assuntos
Dano ao DNA , Histonas , Poli(ADP-Ribose) Polimerase-1/metabolismo , Histonas/metabolismo , Reparo do DNA , Poli ADP Ribosilação
13.
Nucleic Acids Res ; 49(9): 5028-5037, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34009316

RESUMO

Nucleosomes in all eukaryotic cells are organized into higher order structures that facilitate genome compaction. Visualizing these organized structures is an important step in understanding how genomic DNA is efficiently stored yet remains accessible to information-processing machinery. Arrays of linked nucleosomes serve as useful models for understanding how the properties of both DNA and protein partners affect their arrangement. A number of important questions are also associated with understanding how the spacings between nucleosomes are affected by the histone proteins, chromatin remodelers, or other chromatin-associated protein partners. Contrast variation small angle X-ray scattering (CVSAXS) reports the DNA conformation within protein-DNA complexes and here is applied to measure the conformation(s) of trinucleosomes in solution, with specific sensitivity to the distance between and relative orientation of linked nucleosomes. These data are interpreted in conjunction with DNA models that account for its sequence dependent mechanical properties, and Monte-Carlo techniques that generate realistic structures for comparison with measured scattering profiles. In solution, trinucleosomes segregate into two dominant populations, with the flanking nucleosomes stacked or nearly equilaterally separated, e.g. with roughly equal distance between all pairs of nucleosomes. These populations are consistent with previously observed magnesium-dependent structures of trinucleosomes with shorter linkers.


Assuntos
Modelos Moleculares , Nucleossomos/química , DNA/química , Espalhamento a Baixo Ângulo , Difração de Raios X
15.
Development ; 146(19)2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31558570

RESUMO

Over the past few years, interest in chromatin and its evolution has grown. To further advance these interests, we organized a workshop with the support of The Company of Biologists to debate the current state of knowledge regarding the origin and evolution of chromatin. This workshop led to prospective views on the development of a new field of research that we term 'EvoChromo'. In this short Spotlight article, we define the breadth and expected impact of this new area of scientific inquiry on our understanding of both chromatin and evolution.


Assuntos
Cromatina/genética , Evolução Molecular , Animais , Genoma , Humanos
16.
Mol Cell ; 51(5): 662-77, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23973327

RESUMO

The histone H2A-H2B heterodimer is an integral component of the nucleosome. The cellular localization and deposition of H2A-H2B into chromatin is regulated by numerous factors, including histone chaperones such as nucleosome assembly protein 1 (Nap1). We use hydrogen-deuterium exchange coupled to mass spectrometry to characterize H2A-H2B and Nap1. Unexpectedly, we find that at low ionic strength, the α helices in H2A-H2B are frequently sampling partially disordered conformations and that binding to Nap1 reduces this conformational sampling. We identify the interaction surface between H2A-H2B and Nap1 and confirm its relevance both in vitro and in vivo. We show that two copies of H2A-H2B bound to a Nap1 homodimer form a tetramer with contacts between H2B chains similar to those in the four-helix bundle structural motif. The organization of the complex reveals that Nap1 competes with histone-DNA and interhistone interactions observed in the nucleosome, thereby regulating the availability of histones for chromatin assembly.


Assuntos
Histonas/metabolismo , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Montagem e Desmontagem da Cromatina , DNA Fúngico/metabolismo , Medição da Troca de Deutério , Chaperonas de Histonas , Histonas/química , Proteína 1 de Modelagem do Nucleossomo/genética , Nucleossomos , Concentração Osmolar , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Estabilidade Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Soluções
17.
Nucleic Acids Res ; 47(2): 666-678, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30445475

RESUMO

Nucleosome disruption plays a key role in many nuclear processes including transcription, DNA repair and recombination. Here we combine atomic force microscopy (AFM) and optical tweezers (OT) experiments to show that high mobility group B (HMGB) proteins strongly disrupt nucleosomes, revealing a new mechanism for regulation of chromatin accessibility. We find that both the double box yeast Hmo1 and the single box yeast Nhp6A display strong binding preferences for nucleosomes over linker DNA, and both HMGB proteins destabilize and unwind DNA from the H2A-H2B dimers. However, unlike Nhp6A, Hmo1 also releases half of the DNA held by the (H3-H4)2 tetramer. This difference in nucleosome destabilization may explain why Nhp6A and Hmo1 function at different genomic sites. Hmo1 is enriched at highly transcribed ribosomal genes, known to be depleted of histones. In contrast, Nhp6A is found across euchromatin, pointing to a significant difference in cellular function.


Assuntos
Proteínas HMGN/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Microscopia de Força Atômica , Nucleossomos/química , Nucleossomos/ultraestrutura , Pinças Ópticas
18.
Biochemistry ; 59(21): 2003-2011, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32357296

RESUMO

Poly(ADP-ribose) polymerase 1 (PARP1) is an important first responder in the mechanism of DNA repair in eukaryotic cells. It is also a validated drug target, with four different PARP inhibitors (PARPi) approved for the treatment of BRCA-negative cancers. Despite past efforts, many aspects of PARPi are poorly understood, in particular their ability to trap PARP1 on chromatin and the relationships between their potencies, cellular toxicities, and trapping efficiencies. Because PARP trapping is widely believed to originate in allosteric coupling between DNA binding and the catalytic site, we further investigated the binding properties of PARP1 to a model for DNA with a double-strand break in the presence and absence of PARPi. Specifically, we have used sequential mixing stopped-flow spectroscopy to identify a slow conformational change that follows rapid DNA binding. Using a range of DNA concentrations and different mutants of PARP1 we demonstrate that this conformational change is one of the steps of the "monkey bar mechanism" that promotes DNA-dependent dissociation of DNA. This conformational change also corresponds to the previously identified conformational change associated with DNA-dependent activation of PARP1. Despite linking the conformational change associated with DNA binding and release to DNA activation, we find no evidence for PARPi perturbing this allosteric coupling.


Assuntos
DNA/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Sítios de Ligação , DNA/química , Polarização de Fluorescência , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Conformação Molecular , Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerase-1/genética
19.
Nucleic Acids Res ; 46(19): 9907-9917, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30239791

RESUMO

Eukaryotic chromatin is a highly dynamic structure with essential roles in virtually all DNA-dependent cellular processes. Nucleosomes are a barrier to DNA access, and during DNA replication, they are disassembled ahead of the replication machinery (the replisome) and reassembled following its passage. The Histone chaperone Chromatin Assembly Factor-1 (CAF-1) interacts with the replisome and deposits H3-H4 directly onto newly synthesized DNA. Therefore, CAF-1 is important for the establishment and propagation of chromatin structure. The molecular mechanism by which CAF-1 mediates H3-H4 deposition has remained unclear. However, recent studies have revealed new insights into the architecture and stoichiometry of the trimeric CAF-1 complex and how it interacts with and deposits H3-H4 onto substrate DNA. The CAF-1 trimer binds to a single H3-H4 dimer, which induces a conformational rearrangement in CAF-1 promoting its interaction with substrate DNA. Two CAF-1•H3-H4 complexes co-associate on nucleosome-free DNA depositing (H3-H4)2 tetramers in the first step of nucleosome assembly. Here, we review the progress made in our understanding of CAF-1 structure, mechanism of action, and how CAF-1 contributes to chromatin dynamics during DNA replication.


Assuntos
Fator 1 de Modelagem da Cromatina/fisiologia , Montagem e Desmontagem da Cromatina/fisiologia , Histonas/metabolismo , Nucleossomos/metabolismo , Animais , Cromatina/metabolismo , Humanos , Chaperonas Moleculares/metabolismo
20.
Nucleic Acids Res ; 46(5): 2321-2334, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29300974

RESUMO

The process of transcriptional elongation by RNA polymerase II (RNAPII) in a chromatin context involves a large number of crucial factors. Spn1 is a highly conserved protein encoded by an essential gene and is known to interact with RNAPII and the histone chaperone Spt6. Spn1 negatively regulates the ability of Spt6 to interact with nucleosomes, but the chromatin binding properties of Spn1 are largely unknown. Here, we demonstrate that full length Spn1 (amino acids 1-410) binds DNA, histones H3-H4, mononucleosomes and nucleosomal arrays, and has weak nucleosome assembly activity. The core domain of Spn1 (amino acids 141-305), which is necessary and sufficient in Saccharomyces cerevisiae for growth under ideal growth conditions, is unable to optimally interact with histones, nucleosomes and/or DNA and fails to assemble nucleosomes in vitro. Although competent for binding with Spt6 and RNAPII, the core domain derivative is not stably recruited to the CYC1 promoter, indicating chromatin interactions are an important aspect of normal Spn1 functions in vivo. Moreover, strong synthetic genetic interactions are observed with Spn1 mutants and deletions of histone chaperone genes. Taken together, these results indicate that Spn1 is a histone binding factor with histone chaperone functions.


Assuntos
Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Citocromos c/genética , DNA/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA