RESUMO
The deficit in cerebral blood flow (CBF) seen in patients with hypertension-induced vascular dementia is increasingly viewed as a therapeutic target for disease-modifying therapy. Progress is limited, however, due to uncertainty surrounding the mechanisms through which elevated blood pressure reduces CBF. To investigate this, we used the BPH/2 mouse, a polygenic model of hypertension. At 8 mo of age, hypertensive mice exhibited reduced CBF and cognitive impairment, mimicking the human presentation of vascular dementia. Small cerebral resistance arteries that run across the surface of the brain (pial arteries) showed enhanced pressure-induced constriction due to diminished activity of large-conductance Ca2+-activated K+ (BK) channels-key vasodilatory ion channels of cerebral vascular smooth muscle cells. Activation of BK channels by transient intracellular Ca2+ signals from the sarcoplasmic reticulum (SR), termed Ca2+ sparks, leads to hyperpolarization and vasodilation. Combining patch-clamp electrophysiology, high-speed confocal imaging, and proximity ligation assays, we demonstrated that this vasodilatory mechanism is uncoupled in hypertensive mice, an effect attributable to physical separation of the plasma membrane from the SR rather than altered properties of BK channels or Ca2+ sparks, which remained intact. This pathogenic mechanism is responsible for the observed increase in constriction and can now be targeted as a possible avenue for restoring healthy CBF in vascular dementia.
Assuntos
Demência Vascular , Hipertensão , Camundongos , Humanos , Animais , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Demência Vascular/etiologia , Demência Vascular/metabolismo , Músculo Liso Vascular/metabolismo , Artérias Cerebrais/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismoRESUMO
Recent investigation of a constitutively active ADAMTS13 variant (caADAMTS13) in murine models of acute ischaemic stroke (AIS) have revealed a potential anti-inflammatory mechanism of action contributing to its protective effect. However, it remains unclear whether these observations are a direct result of VWF proteolysis by caADAMTS13. We have implemented state of the art in vitro assays of neutrophil rolling and transmigration to quantify the impact of caADAMTS13 on these processes. Moreover, we have tested caADAMTS13 in two in vivo assays of neutrophil migration to confirm the impact of the treatment on the neutrophil response to sterile inflammation. Neutrophil rolling, over an interleukin-1ß stimulated hCMEC/D3 monolayer, is directly inhibited by caADAMTS13, reducing the proportion of neutrophils rolling to 9.5 ± 3.8â¯% compared to 18.0 ± 4.5â¯% in untreated controls. Similarly, neutrophil transmigration recorded in real-time, was significantly suppressed in the presence of caADAMTS13 which reduced the number of migration events to a level like that in unstimulated controls (18.0 ± 4.5 and 15.8 ± 7.5 cells/mm2/h, respectively). Brain tissue from mice undergoing experimental focal cerebral ischaemia has indicated the inhibition of this process by caADAMTS13. This is supported by caADAMTS13's ability to reduce neutrophil migration into the peritoneal cavity in an ischaemia-independent model of sterile inflammation, with the VWF-dependent mechanism by which this occurs being confirmed using a second experimental stroke model. These findings will be an important consideration in the further development of caADAMTS13 as a potential therapy for AIS and other thromboinflammatory pathologies, including cardiovascular disease.