Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Am J Transl Res ; 16(7): 3259-3272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114700

RESUMO

OBJECTIVE: Anemia is a pathological condition characterized by reduced oxygen bioavailability and/or changes in hematological parameters. This study investigated the anti-anemic activities of Carica papaya (CP) phytoconstituents in aluminium-chloride-induced anemic rats. METHOD: Twenty-seven rats were randomized into nine groups of three rats as follows; group 1 was the normal (non-induced) group, 2-9 were anemic rats administered 1 mL distilled water, standard drug (3 mg/kg body weight (bw) ferrous sulphate), 100, 300 and 500 mg/kg bw of crude methanolic extract of CP (CMECP) of the leaf and 100, 300 and 500 mg/kg bw of CMECP of the seed respectively in the first stage of the study. In the second stage, thirty-three rats were randomized into eleven groups of three rats as follows; group 1 was the normal group, 2-11 were anemic rats treated with 1 mL distilled water, standard drug, 75 mg/kg bw, 150 mg/kg of alkaloid fraction of CP seed, 75 mg/kg bw, 150 mg/kg bw of flavonoid fraction of CP seed, 75 mg/kg bw and 150 mg/kg of alkaloid fraction of CP leaf, 75 mg/kg bw and 150 mg/kg bw of flavonoid fraction of CP leaf respectively. RESULTS: Treatment of anemic rats with CP extracts and fractions of the seed and leaf significantly reversed the hematological parameters and body weight of anemic rats in a dose independent fashion. The CMECP leaf at 100 and 500 mg/kg gave PCV of 42.50±0.50 and 47.00±0.50, while the seed gave 49.50±0.50 and 42.50±0.50 respectively after 2 weeks of treatment. However, the alkaloid and flavonoid fraction of CP presented better anti-anemic properties probably due to constituents' synergism. CONCLUSION: This study concluded that CP possesses phytoconstituents which potentiates it as a safe anti-anemic drug candidate.

2.
Biomed Pharmacother ; 179: 117308, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39180791

RESUMO

The continual increase in global diabetic statistics portends decreased productivity and life spans, thus making it a disease of concern requiring more effective and safe therapeutic options. While several reports on antidiabetic plants, including Hura crepitans, are available, there is still a dearth of information on the holistic antidiabetic properties of H. crepitans and its associated complications. This study evaluated the antidiabetic potential of methanolic extract of Hura crepitans using in vitro, in vivo, and in silico approaches. The extract revealed a dose-dependent in vitro effect, with a 47.97 % and 65.34 % decrease in the fasting blood sugar levels of streptozotocin (STZ) induced diabetic rats at 150 and 300 mg/kg BW, respectively. Likewise, the extract increased serum and pancreatic insulin levels, and significantly ameliorated neuronal oxidative stress and inflammation by reducing the expression levels of cholinesterase, NF-κB, and COX-2 in the brain of hyperglycemic rats. Serum dyslipidemia, liver, and kidney biomarker indices, and hematological alterations in diabetic rats were also significantly attenuated by the extract. Several constituents, mainly terpenes, were identified in the extract. To further predict the drug-likeness, pharmacokinetics, and binding properties of the compounds, in silico analysis was conducted. Ergosta-2,24-dien-26-oicacid,18-(acetyloxy)-5,6-epoxy-4, 22-dihydroxy-1-oxo-,delta.-lactone-4.beta., displayed the highest docking scores for acetylcholinesterase, butyrylcholinesterases, alpha-amylase, and nuclear factor-kB with values of -12.4, -10.9, -10.3, and -9.4 kcal/mol, while ergost-25-ene-6,12-dione,3,5-dihydroxy-, (3.beta.,5.alpha.) topped for cyclooxygenase-2 (-9.0 kcal/mol). The top-ranked compounds also presented significant oral drug-likeness, pharmacokinetics, and safety properties. Altogether, our data provide preclinical evidence of the potential of Hura crepitans in ameliorating diabetes and its associated complications.


Assuntos
Glicemia , Diabetes Mellitus Experimental , Hipoglicemiantes , Extratos Vegetais , Ratos Wistar , Estreptozocina , Terpenos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/sangue , Extratos Vegetais/farmacologia , Masculino , Ratos , Terpenos/farmacologia , Hipoglicemiantes/farmacologia , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Simulação de Acoplamento Molecular , Complicações do Diabetes/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos
3.
Artigo em Inglês | MEDLINE | ID: mdl-37941895

RESUMO

Viola L. is the largest genus of the Violaceae family with more than 500 species across the globe. The present extensive literature survey revealed Viola species to be a group of important nutritional and medicinal plants used for the ethnomedicinal treatment of noncommunicable diseases (NCDs) such as diabetes, asthma, lung diseases, and fatigue. Many plant species of this genus have also received scientific validation of their pharmacological activities including neuroprotective, immunomodulatory, anticancer, antihypertensive, antidyslipidemic, analgesic, antipyretic, diuretic, anti-inflammatory, anthelmintic, and antioxidant. Viola is highly rich in different natural products some of which have been isolated and identified in the past few decades; these include flavonoids terpenoids and phenylpropanoids of different pharmacological activities. The pharmacokinetics and clinical studies on this genus are lacking, and the present review is aimed at summarizing the current understanding of the ethnopharmacology, phytochemistry, nutritional composition, and pharmacological profile of medicinal plants from the Viola genus to reveal its therapeutic potentials, gaps, and subsequently open a new window for future pharmacological research.

4.
Biomed Pharmacother ; 158: 114114, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36525818

RESUMO

Tridax procumbens (cotton buttons) is a flowering plant with a medicinal reputation for treating infections, wounds, diabetes, and liver and kidney diseases. The present research was conducted to evaluate the possible protective effects of the T. procumbens methanolic extract (TPME) on an experimentally induced type 2 diabetes rat model. Wistar rats with streptozotocin (STZ)-induced diabetes were randomly allocated into five groups of five animals each, viz., a normal glycemic group (I), diabetic rats receiving distilled water group (II), diabetic rats with 150 (III) and 300 mg/kg of TPME (IV) groups, and diabetic rats with 100 mg/kg metformin group (V). All treatments were administered for 21 consecutive days through oral gavage. Results: Administration of the T. procumbens extract to diabetic rats significantly restored alterations in levels of fasting blood glucose (FBG), body weight loss, serum and pancreatic insulin levels, and pancreatic histology. Furthermore, T. procumbens significantly attenuated the dyslipidemia (increased cholesterol, low-density lipoprotein-cholesterol (LDL-C), triglycerides, and high-density lipoprotein (HDL) in diabetic rats), serum biochemical alterations (alanine transaminase (ALT), aspartate transaminase (AST), alanine phosphatase (ALP), blood urea nitrogen (BUN), creatinine, uric acid, and urea) and full blood count distortion in rats with STZ-induced diabetes. The TPME also improved the antioxidant status as evidenced by increased superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and decreased malondialdehyde (MDA); and decreased levels of cholinesterases (acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)), and proinflammatory mediators including nuclear factor (NF)-κB, cyclooxygenase (COX)- 2, and nitrogen oxide (NOx) in the brain of rats with STZ-induced diabetes compared to rats with STZ-induced diabetes that received distilled water. However, TPME treatment failed to attenuate the elevated monoamine oxidases and decreased dopamine levels in the brain of rats with STZ-induced diabetes. Extract characterization by liquid chromatography mass spectrometry (LC-MS) identified isorhamnetin (retention time (RT)= 3.69 min, 8.8%), bixin (RT: 25.06 min, 4.72%), and lupeol (RT: 25.25 min, 2.88%) as the three most abundant bioactive compounds that could be responsible for the bioactivity of the plant. In conclusion, the TPME can be considered a promising alternative therapeutic option for managing diabetic complications owing to its antidiabetic, antihyperlipidemic, antioxidant, and anti-inflammatory effects in rats with STZ-prompted diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Dislipidemias , Hiperglicemia , Ratos , Animais , Antioxidantes/metabolismo , Ratos Wistar , Ciclo-Oxigenase 2/metabolismo , NF-kappa B/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glicemia/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/metabolismo , Diabetes Mellitus Experimental/metabolismo , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/análise , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Fígado , Glutationa/metabolismo , Estresse Oxidativo , Óxidos de Nitrogênio/metabolismo , Dislipidemias/tratamento farmacológico , Dislipidemias/metabolismo , Colesterol/metabolismo , Cognição , Água/farmacologia , Estreptozocina/farmacologia
5.
Am J Transl Res ; 15(7): 4504-4520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560206

RESUMO

OBJECTIVES: Diabetic nephropathy (DN) is one of the most prevalent secondary complications associated with diabetes mellitus. Decades of research have implicated multiple pathways in the etiology and pathophysiology of diabetic nephropathy. There has been no reliable predictive biomarkers for the onset or progression of DN and no successful treatments are available. METHODS: In the present study, we explored the datasets of RNA sequencing data from patients with Type II diabetes mellitus (T2DM)-induced nephropathy to identify a novel gene signature. We explored the target bioactive compounds identified from Azanza garckeana, a medicinal plant commonly used by the traditional treatment of diabetes nephropathy. RESULTS: Our analysis identified lymphotoxin beta (LTB), SRY-box transcription factor 4 (SOX4), SOX9, and WAP four-disulfide core domain protein 2 (WFDC2) as novel signatures of T2DM-induced nephropathy. Additional analysis revealed the pathological involvement of the signature in cell-cell adhesion, immune, and inflammatory responses during diabetic nephropathy. Molecular docking and dynamic simulation at 100 ns conducted studies revealed that among the three compounds, Terpinen-4-ol exhibited higher binding efficacies (binding energies (ΔG) = -3.9~5.5 kcal/mol) against the targets. The targets, SOX4, and SOX9 demonstrated higher druggability towards the three compounds. WFDC2 was the least attractive target for the compounds. CONCLUSION: The present study was relevant in the diagnosis, prognosis, and treatment follow up of patients with diabetes induced nephropathy. The study provided an insight into the therapeutic application of the bioactive principles from Azanza garckeana. Continued follow-up invitro validations study are ongoing in our laboratory.

6.
Am J Transl Res ; 15(10): 5997-6014, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37969197

RESUMO

OBJECTIVES: The use of medicinal plants for diabetes treatment is increasing owing to their effectiveness and safety compared to synthetic drugs. Thus, the ameliorative effects of Azanza garckeana (F. Hoffm.) fractions in diabetes-induced dyslipidemia, hepatopathy, and nephropathy in rats were evaluated in this study. METHODS: Rats with alloxan (120 mg/kg body weight (BW))-induced diabetes were randomized into different groups (n=5) and treated with the crude methanolic extract, and fractions (n-hexane, ethyl acetate, and aqueous fractions) of A. garckeana each at 100, 200, and 400 mg/kg BW. Glibenclamide (5 mg/kg BW) was used as a reference drug, and all treatments were administered orally daily for 6 weeks. RESULTS: Our data revealed that treatment with the crude extract caused a dose-dependent hypoglycemic effect of 61.32±3.45%, 76.05±3.05%, and 78.59±5.90% at 100, 200, and 400 mg/kg BW, respectively and improved the BW of the animals. The extract also ameliorated the elevated cholesterol, triglyceride, low-density lipoprotein cholesterol, and increased serum levels of high-density lipoprotein cholesterol compared with untreated control animals. The extract also reversed serum biochemical alterations in aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, creatinine, total and direct bilirubin, urea, and uric acid that were observed in untreated diabetic rats. Interestingly, the A. garckeana fraction also exhibited significant protection against diabetes-induced dyslipidemia, hepatopathy, and nephropathy in rats, with the ethyl acetate fraction exhibiting a remarkable protective effect. The LC-MS characterisation of the active fraction identified the presence of various phenolic and flavonoid compounds that could be responsible for the bioactivity of the fraction. CONCLUSION: Collectively, this study suggests the potential application of A. garckeana for effective treatment of diabetic nephropathy, with the ethyl acetate fraction of this plant representing a reserve of potential candidates for developing new drugs.

7.
Biomed Pharmacother ; 162: 114582, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36989727

RESUMO

In the present study, in vitro, in vivo, and in silico models were used to evaluate the therapeutic potential of Pulmeria alba methanolic (PAm) extract, and we identified the major phytocompound, apigetrin. Our in vitro studies revealed dose-dependent increased glucose uptake and inhibition of α-amylase (50% inhibitory concentration (IC50)= 217.19 µg/mL), antioxidant (DPPH, ferric-reducing activity of plasma (FRAP), and lipid peroxidation (LPO) [IC50 = 103.23, 58.72, and 114.16 µg/mL respectively]), and anti-inflammatory potential (stabilizes human red blood cell (HRBC) membranes, and inhibits proteinase and protein denaturation [IC50 = 143.73, 131.63, and 198.57 µg/mL]) by the PAm extract. In an in vivo model, PAm treatment reversed hyperglycemia and attenuated insulin deficiency in rats with streptozotocin (STZ)-induced diabetes. A post-treatment tissue analysis revealed that PAm attenuated neuronal oxidative stress, neuronal inflammation, and neuro-cognitive deficiencies. This was evidenced by increased levels of antioxidants enzymes (superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH)), and decreased malondialdehyde (MDA), proinflammatory markers (cyclooxygenase 2 (COX2), nuclear factor (NF)-κB and nitric oxide (NOx)), and acetylcholinesterase (AChE) activities in the brain of PAm-treated rats compared to the STZ-induced diabetic controls. However, no treatment-related changes were observed in levels of neurotransmitters, including serotonin and dopamine. Furthermore, STZ-induced dyslipidemia and alterations in serum biochemical markers of hepatorenal dysfunction were also reversed by PAm treatment. Extract characterization identified apigetrin (retention time: 21,227 s, 30.48%, m/z: 433.15) as the major bioactive compound in the PAm extract. Consequently, we provide in silico insights into the potential of apigetrin to target AChE/COX-2/NOX/NF-κB Altogether the present study provides preclinical evidence of the therapeutic potential of the apigetrin-enriched PAm extract for treating oxidative stress and neuro-inflammation associated with diabetes.


Assuntos
Diabetes Mellitus Experimental , Ratos , Humanos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Acetilcolinesterase/metabolismo , Ratos Wistar , Glicemia/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Encéfalo/metabolismo , Inflamação/tratamento farmacológico , Estreptozocina/uso terapêutico , Extratos Vegetais/farmacologia
8.
Biology (Basel) ; 11(2)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35205190

RESUMO

In recent years, the incidence of thyroid cancer has been increasing globally, with papillary thyroid cancer (PTCa) being the most prevalent pathological type, accounting for approximately 80% of all cases. Although PTCa has been regarded to be slow growing and has a good prognosis, in some cases, PTCa can be aggressive and progress despite surgery and radioactive iodine treatment. In addition, most cancer treatment drugs have been shown to be cytotoxic and nonspecific to cancer cells, as they also affect normal cells and consequently cause harm to the body. Therefore, searching for new targets and therapies is required. Herein, we explored a bioinformatics analysis to identify important theranostic markers for THCA. Interestingly, we identified that the DPP4/CTNNB1/MET gene signature was overexpressed in PTCa, which, according to our analysis, is associated with immuno-invasive phenotypes, cancer progression, metastasis, resistance, and unfavorable clinical outcomes of thyroid cancer cohorts. Since most cancer drugs were shown to exhibit cytotoxicity and to be nonspecific, herein, we evaluated the anticancer effects of the antidiabetic drug sitagliptin, which was recently shown to possess anticancer activities, and is well tolerated and effective. Interestingly, our in silico molecular docking results exhibited putative binding affinities of sitagliptin with DPP4/CTNNB1/MET signatures, even higher than standard inhibitors of these genes. This suggests that sitagliptin is a potential THCA therapeutic, worthy of further investigation both in vitro and in vivo and in clinical settings.

9.
Biomed Pharmacother ; 152: 113196, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35667233

RESUMO

The quest for novel anti-diabetic medication from medicinal plants is very important since they contain bioactive phytochemicals that offer better activity and safety compared to conventional therapy. In the present study, in vitro, in vivo and in silico approaches were explored to evaluate the anti-inflammatory, antioxidants, and hypoglycemic activities of the crude methanol extract of Azanza garckeana pulp. Our in vitro analysis revealed that the extract contains total phenols (260.80 ±â€¯2.23 mg/100 g) and total flavonoids (10.28 ±â€¯1.29 mg/100 g) contents, and demonstrated dose-dependent in vitro antioxidants activities in; DPPH (IC50 =141.30 ±â€¯1.64 µg/mL), FRAP (IC50 =155.07 ±â€¯1.03 µg/mL), LPO (IC50 =184.96 ±â€¯2.01 µg/mL), and ABTS (IC50 =162.56 ±â€¯1.14 µg/mL) assays; anti-inflammatory activities in: membrane stabilization (IC50 =141.34 ±â€¯0.46 µg/mL), protein denaturation (IC50 =203.61 ±â€¯2.35 µg/mL) and proteinase activities (IC50=f 171.35 ±â€¯1.56 µg/mL) assays; and hypoglycemic activities in: α- amylase (IC50 277.85 ±â€¯2.51 µg/mL), and glucose uptake by yeast cells assays. In vivo analysis revealed that the extract exhibited dose-dependent anti-inflammatory, hypoglycemic activities and improved the weight gain in STZ-induced diabetic rats. In addition, the extract attenuated oxidative stress and increased the activities of SOD, catalase, GSH while depleting the level of LPO in STZ induced diabetic rats. Consequently, the liquid chromatography mass spectrometry (LC-MS) characterization of A. garckeana pulp, revealed the presence of 2-Hexadecen-1-ol,3,7,11,15-tetramethyl-,(2E,7 R,11 R)-, nonyl flavanone, testolactone and 6-(Benzyloxy)- 4,4-Dimethyl-2-Chromanone. These compounds were subjected to pharmacoinformatics analysis among which testolactone and 6-(Benzyloxy)- 4,4-Dimethyl-2-Chromanone demonstrated the best drug-likeness, pharmacokinetics, and also exhibited potential hypoglycemic and anti-inflammatory properties. Altogether, the present study provides preclinical evidence of the antioxidant, anti-inflammatory and antidiabetic activities of A. garckeana extract suggesting its potential applications for the development of alternative therapy for diabetes and its associated inflammatory condition.


Assuntos
Diabetes Mellitus Experimental , Malvaceae , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Glicemia , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Extratos Vegetais/uso terapêutico , Ratos , Testolactona/uso terapêutico
10.
Artigo | IMSEAR | ID: sea-226811

RESUMO

Aims: The toxicological effects of single and repeated doses of aqueous extract (AE) and cow urine extract (CUE) of Nicotiana tabacum leaf on the liver and kidney function indices of male Wistar rats were investigated. Study Design: Thirty-five male rats were randomized into seven groups (n=5). The control group received 0.5 mL of distilled water, groups A and B received 8 mg/kg body weight (BW) of CUE and AE respectively, once daily; groups C and D received 16 mg/kg BW of CUE and AE respectively, thrice a day (TD); groups E and F received 32 mg/kg BW of CUE and AE respectively, TD.The administration was oral and lasted for 28 days. Place and Duration of Study: The study was carried out at Summit University, Offa, Nigeria between June 2019 and August 2019. Methodology: Thirty-five male rats were randomized into seven groups (n=5). The control group received 0.5 mL of distilled water, groups A and B received 8 mg/kg body weight (BW) of CUE and AE respectively, once daily; groups C and D received 16 mg/kg BW of CUE and AE respectively, thrice a day (TD); groups E and F received 32 mg/kg BW of CUE and AE respectively, TD. Results: The result revealed no significant difference in the activities of the ALP, and GGT but a significant increase in the ACP, ALT, and AST activities in both tissues and serum. Furthermore, there was a significant decrease in albumin concentration of rats in all the groups except group B when compared with the control rats. Liver and kidney histology revealed minimal lymphocytic infiltration with no sign of medium-term systemic damage. Conclusion: The study suggests no nephrotoxicity of AE and CUE at all doses administered, but probable hepatotoxicity at higher and repeated doses of both extracts except at the single dose of 8 mg/kg BW of AE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA