Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Am J Pathol ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39332675

RESUMO

Acute kidney injury (AKI) is an important contributor to the development of chronic kidney disease (CKD). There is a need to understand molecular mediators that drive recovery and progression to CKD. In particular, the regulatory role of miRNAs in AKI is poorly understood. miRNA and mRNA sequencing were performed on biobanked human kidney tissues obtained in the routine care of subjects with a diagnosis of AKI, minimal change disease, or without known kidney disease in nephrectomy tissue. mRNA analysis revealed that nephrectomy tissues exhibited an injury signature similar to that of AKI and not identified in minimal change disease samples. The transcriptomic signature of human AKI was enriched in pathways involved in cell adhesion, epithelial-to-mesenchymal transition, and cell cycle arrest (eg, CDH6, ITGB6, CDKN1A). In AKI, up-regulation of miR-146a, miR-155, miR-142, and miR-122 was associated with pathways involved in immune cell recruitment, inflammation, and epithelial-to-mesenchymal transition. miR-122 and miR-146 were associated with down-regulation of DDR2 and IGFBP6, which are genes involved in the recovery and progression of kidney disease. These data provide integrated miRNA signatures that complement mRNA and other epigenetic data available in kidney atlases.

2.
Small ; : e2406429, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39421885

RESUMO

Liquid-liquid phase separation (LLPS) of tau protein can initiate its aggregation which is associated with Alzheimer's disease. The pathogenic mutation ΔK280 can enhance the aggregation of K18, a truncated tau variant comprising the microtubule-binding domain. However, the impact of ΔK280 on K18 LLPS and underlying mechanisms are largely unexplored. Herein, the conformational ensemble and LLPS of ΔK280 K18 through multiscale molecular simulations and microscopy experiments are investigated. All-atom molecular dynamic simulations reveal that ΔK280 significantly enhances the collapse degree and ß-sheet content of the K18 monomer, indicating that ΔK280 mutation may promote K18 LLPS, validated by coarse-grained phase-coexistence simulations and microscopy experiments. Importantly, ΔK280 mutation promotes ß-sheet formation of six motifs (especially PHF6), increases the hydrophobic solvent exposure of PHF6* and PHF6, and enhances hydrophobic, hydrogen bonding, and cation-π interactions involving most of the motifs, thus facilitating the phase separation of K18. Notably, ΔK280 alters the interaction network among the six motifs, inducing the formation of K18 conformations with high ß-sheet contents and collapse degree. Coarse-grained simulations on full-length tau reveal that ΔK280 promotes tau LLPS by enhancing the hydrophobic interactions involving the microtubule-binding domain. These findings offer detailed mechanistic insights into ΔK280-induced tau pathogenesis, providing potential targets for therapeutic intervention.

3.
Angew Chem Int Ed Engl ; 63(38): e202408670, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38943429

RESUMO

Peptide folding is a dynamic process driven by non-covalent cross-linking leading to functional nanostructures for essential biochemical activities. However, replicating this process in synthetic systems is challenging due to the difficulty in mimicking nature's real-time regulation of non-covalent crosslinking for single-chain polymer folding. Here, we address this by employing anionic dithiol building blocks to create macrocyclic disulfides as non-covalent crosslinkers that adapted to the folding process. Initially, small macrocycles facilitated a low degree folding of a polycation. Then, this preorganized structure catalysed the production of larger macrocycles that enhanced the folding conversely. The self-adaptive synthesis was verified through the encapsulation of an anticancer drug, showing an updated production distribution of non-covalent crosslinkers and maximizing drug-loading efficiency against drug-resistant cancer in vitro. Our research advances the understanding of molecular systems by exploring species evolution via the structural dynamics of polymer folding. Additionally, adaptive synthesis enables controlled, sequential folding of synthetic polymers, with the potential to mimic protein functions.


Assuntos
Polímeros , Polímeros/química , Polímeros/síntese química , Dissulfetos/química , Humanos , Dobramento de Proteína , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/síntese química , Estrutura Molecular
4.
Small ; 19(37): e2206232, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37170734

RESUMO

Oligomerization of antimicrobial peptides (AMPs) is critical in their effects on pathogens. LL-37 and its truncated fragments are widely investigated regarding their structures, antimicrobial activities, and application, such as developing new antibiotics. Due to the small size and weak intermolecular interactions of LL-37 fragments, it is still elusive to establish the relationship between oligomeric states and antimicrobial activities. Here, an α-hemolysin nanopore, mass spectrometry (MS), and molecular dynamic (MD) simulations are used to characterize the oligomeric states of two LL-37 fragments. Nanopore studies provide evidence of trapping events related to the oligomer formation and provide further details on their stabilities, which are confirmed by MS and MD simulations. Furthermore, simulation results reveal the molecular basis of oligomer dynamics and states of LL-37 fragments. This work provides unique insights into the relationship between the oligomer dynamics of AMPs and their antimicrobial activities at the single-molecule level. The study demonstrates how integrating methods allows deciphering single molecule level understanding from nanopore sensing approaches.


Assuntos
Anti-Infecciosos , Nanoporos , Proteínas Hemolisinas/química , Simulação de Dinâmica Molecular
5.
Angew Chem Int Ed Engl ; 62(23): e202216480, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36880481

RESUMO

Prevalent in nature, protein oligomers play critical roles both physiologically and pathologically. The multimeric nature and conformational transiency of protein oligomers greatly complicate a more detailed glimpse into the molecular structure as well as function. In this minireview, the oligomers are classified and described on the basis of biological function, toxicity, and application. We also define the bottlenecks in recent oligomer studies and further review numerous frontier methods for engineering protein oligomers. Progress is being made on many fronts for a wide variety of applications, and protein grafting is highlighted as a promising and robust method for oligomer engineering. These advances collectively allow the engineering and design of stabilized oligomers that bring us one step closer to understanding their biological functions, toxicity, and a wide range of applications.


Assuntos
Peptídeos beta-Amiloides , Amiloide , Peptídeos beta-Amiloides/metabolismo , Amiloide/química , Engenharia de Proteínas , Conformação Molecular , Estrutura Molecular
6.
Q Rev Biophys ; 53: e12, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33148356

RESUMO

In neurodegenerative diseases, a wide range of amyloid proteins or peptides such as amyloid-beta and α-synuclein fail to keep native functional conformations, followed by misfolding and self-assembling into a diverse array of aggregates. The aggregates further exert toxicity leading to the dysfunction, degeneration and loss of cells in the affected organs. Due to the disordered structure of the amyloid proteins, endogenous molecules, such as lipids, are prone to interact with amyloid proteins at a low concentration and influence amyloid cytotoxicity. The heterogeneity of amyloid proteinscomplicates the understanding of the amyloid cytotoxicity when relying only on conventional bulk and ensemble techniques. As complementary tools, single-molecule techniques (SMTs) provide novel insights into the different subpopulations of a heterogeneous amyloid mixture as well as the cytotoxicity, in particular as involved in lipid membranes. This review focuses on the recent advances of a series of SMTs, including single-molecule fluorescence imaging, single-molecule force spectroscopy and single-nanopore electrical recording, for the understanding of the amyloid molecular mechanism. The working principles, benefits and limitations of each technique are discussed and compared in amyloid protein related studies.. We also discuss why SMTs show great potential and are worthy of further investigation with feasibility studies as diagnostic tools of neurodegenerative diseases and which limitations are to be addressed.


Assuntos
Proteínas Amiloidogênicas/química , Amiloidose/diagnóstico , Doenças Neurodegenerativas/diagnóstico , Imagem Individual de Molécula , Animais , Biomarcadores/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Microscopia de Força Atômica , Microscopia de Fluorescência , Nanoporos , Nanotecnologia , Óptica e Fotônica , Desnaturação Proteica , Dobramento de Proteína
7.
Kidney Int ; 101(4): 779-792, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34952098

RESUMO

Increased podocyte detachment begins immediately after kidney transplantation and is associated with long-term allograft failure. We hypothesized that cell-specific transcriptional changes in podocytes and glomerular endothelial cells after transplantation would offer mechanistic insights into the podocyte detachment process. To test this, we evaluated cell-specific transcriptional profiles of glomerular endothelial cells and podocytes from 14 patients of their first-year surveillance biopsies with normal histology from low immune risk recipients with no post-transplant complications and compared these to biopsies of 20 healthy living donor controls. Glomerular endothelial cells from these surveillance biopsies were enriched for genes related to fluid shear stress, angiogenesis, and interferon signaling. In podocytes, pathways were enriched for genes in response to growth factor signaling and actin cytoskeletal reorganization but also showed evidence of podocyte stress as indicated by reduced nephrin (adhesion protein) gene expression. In parallel, transcripts coding for proteins required to maintain podocyte adherence to the underlying glomerular basement membrane were downregulated, including the major glomerular podocyte integrin α3 and the actin cytoskeleton-related gene synaptopodin. The reduction in integrin α3 protein expression in surveillance biopsies was confirmed by immunoperoxidase staining. The combined growth and stress response of patient allografts post-transplantation paralleled similar changes in a rodent model of nephrectomy-induced glomerular hypertrophic stress that progress to develop proteinuria and glomerulosclerosis with shortened kidney life span. Thus, even among patients with apparently healthy allografts with no detectable histologic abnormality including alloimmune injury, transcriptomic changes reflecting cell stresses are already set in motion that could drive hypertrophy-associated glomerular disease progression.


Assuntos
Nefropatias , Transplante de Rim , Podócitos , Células Endoteliais , Feminino , Membrana Basal Glomerular/patologia , Humanos , Hipertrofia , Integrina alfa3/metabolismo , Nefropatias/patologia , Transplante de Rim/efeitos adversos , Masculino , Podócitos/patologia
8.
Molecules ; 27(10)2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35630637

RESUMO

The tight binding of Cu and Zn ions to superoxide dismutase 1 (SOD1) maintains the protein stability, associated with amyotrophic lateral sclerosis (ALS). Yet, the quantitative studies remain to be explored for the metal-binding affinity of wild-type SOD1 and its mutants. We have investigated the demetallation of Cu,Zn-SOD1 and its ALS-related G93A mutant in the presence of different standard metal ion chelators at varying temperatures by using an LC-ICP MS-based approach and fast size-exclusion chromatography. Our results showed that from the slow first-order kinetics both metal ions Zn2+ and Cu2+ were released simultaneously from the protein at elevated temperatures. The rate of the release depends on the concentration of chelating ligands but is almost independent of their metal-binding affinities. Similar studies with the G93A mutant of Cu,Zn-SOD1 revealed slightly faster metal-release. The demetallation of Cu,Zn-SOD1 comes always to completion, which hindered the calculation of the KD values. From the Arrhenius plots of the demetallation in the absence of chelators ΔH‡ = 173 kJ/mol for wt and 191 kJ/mol for G93A mutant Cu,Zn-SOD1 was estimated. Obtained high ΔH values are indicative of the occurrence of protein conformational changes before demetallation and we concluded that Cu,Zn-SOD1 complex is in native conditions kinetically inert. The fibrillization of both forms of SOD1 was similar.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/genética , Quelantes , Cobre/química , Humanos , Íons , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Zinco/metabolismo
9.
Physiol Genomics ; 53(1): 1-11, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197228

RESUMO

Comprehensive and spatially mapped molecular atlases of organs at a cellular level are a critical resource to gain insights into pathogenic mechanisms and personalized therapies for diseases. The Kidney Precision Medicine Project (KPMP) is an endeavor to generate three-dimensional (3-D) molecular atlases of healthy and diseased kidney biopsies by using multiple state-of-the-art omics and imaging technologies across several institutions. Obtaining rigorous and reproducible results from disparate methods and at different sites to interrogate biomolecules at a single-cell level or in 3-D space is a significant challenge that can be a futile exercise if not well controlled. We describe a "follow the tissue" pipeline for generating a reliable and authentic single-cell/region 3-D molecular atlas of human adult kidney. Our approach emphasizes quality assurance, quality control, validation, and harmonization across different omics and imaging technologies from sample procurement, processing, storage, shipping to data generation, analysis, and sharing. We established benchmarks for quality control, rigor, reproducibility, and feasibility across multiple technologies through a pilot experiment using common source tissue that was processed and analyzed at different institutions and different technologies. A peer review system was established to critically review quality control measures and the reproducibility of data generated by each technology before their being approved to interrogate clinical biopsy specimens. The process established economizes the use of valuable biopsy tissue for multiomics and imaging analysis with stringent quality control to ensure rigor and reproducibility of results and serves as a model for precision medicine projects across laboratories, institutions and consortia.


Assuntos
Guias como Assunto , Rim/patologia , Medicina de Precisão , Biópsia , Humanos , Reprodutibilidade dos Testes
10.
Angew Chem Int Ed Engl ; 60(34): 18680-18687, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34042235

RESUMO

Amyloid-ß peptide (Aß) oligomers are pathogenic species of amyloid aggregates in Alzheimer's disease. Like certain protein toxins, Aß oligomers permeabilize cellular membranes, presumably through a pore formation mechanism. Owing to their structural and stoichiometric heterogeneity, the structure of these pores remains to be characterized. We studied a functional Aß42-pore equivalent, created by fusing Aß42 to the oligomerizing, soluble domain of the α-hemolysin (αHL) toxin. Our data reveal Aß42-αHL oligomers to share major structural, functional, and biological properties with wild-type Aß42-pores. Single-particle cryo-EM analysis of Aß42-αHL oligomers (with an overall 3.3 Šresolution) reveals the Aß42-pore region to be intrinsically flexible. The Aß42-αHL oligomers will allow many of the features of the wild-type amyloid oligomers to be studied that cannot be otherwise, and may be a highly specific antigen for the development of immuno-base diagnostics and therapies.


Assuntos
Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/análise , Microscopia Crioeletrônica , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Humanos
11.
Kidney Int ; 98(6): 1502-1518, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33038424

RESUMO

COVID-19 morbidity and mortality are increased via unknown mechanisms in patients with diabetes and kidney disease. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) for entry into host cells. Because ACE2 is a susceptibility factor for infection, we investigated how diabetic kidney disease and medications alter ACE2 receptor expression in kidneys. Single cell RNA profiling of kidney biopsies from healthy living donors and patients with diabetic kidney disease revealed ACE2 expression primarily in proximal tubular epithelial cells. This cell-specific localization was confirmed by in situ hybridization. ACE2 expression levels were unaltered by exposures to renin-angiotensin-aldosterone system inhibitors in diabetic kidney disease. Bayesian integrative analysis of a large compendium of public -omics datasets identified molecular network modules induced in ACE2-expressing proximal tubular epithelial cells in diabetic kidney disease (searchable at hb.flatironinstitute.org/covid-kidney) that were linked to viral entry, immune activation, endomembrane reorganization, and RNA processing. The diabetic kidney disease ACE2-positive proximal tubular epithelial cell module overlapped with expression patterns seen in SARS-CoV-2-infected cells. Similar cellular programs were seen in ACE2-positive proximal tubular epithelial cells obtained from urine samples of 13 hospitalized patients with COVID-19, suggesting a consistent ACE2-coregulated proximal tubular epithelial cell expression program that may interact with the SARS-CoV-2 infection processes. Thus SARS-CoV-2 receptor networks can seed further research into risk stratification and therapeutic strategies for COVID-19-related kidney damage.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Nefropatias Diabéticas/metabolismo , Túbulos Renais Proximais/metabolismo , SARS-CoV-2/metabolismo , Adulto , Idoso , Antagonistas de Receptores de Angiotensina/farmacologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , COVID-19/complicações , COVID-19/virologia , Estudos de Casos e Controles , Nefropatias Diabéticas/tratamento farmacológico , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade
12.
Biochemistry ; 58(6): 484-488, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30605322

RESUMO

Large multiprotein nanopores remain difficult to reconstitute in vitro, such as, for instance, the nuclear pore complex (NPC) that regulates macromolecular transport between the nucleus and cytoplasm in cells. Here, we report that two NPC pore membrane proteins self-assemble into ∼20 nm diameter nanopores following in vitro reconstitution into lipid bilayers. Pore formation follows from the assembly of Pom121 and Ndc1 oligomers, which arrange into ringlike membrane structures that encircle aqueous, electrically conductive pores. This represents a key step toward reconstituting membrane-embedded NPC mimics for biological studies and biotechnological applications.


Assuntos
Núcleo Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Glicoproteínas de Membrana/metabolismo , Nanoporos , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Humanos , Glicoproteínas de Membrana/química , Complexo de Proteínas Formadoras de Poros Nucleares/química
13.
J Biol Inorg Chem ; 24(8): 1189-1196, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31562546

RESUMO

The amyloid-ß (Aß) peptides are key molecules in Alzheimer's disease (AD) pathology. They interact with cellular membranes, and can bind metal ions outside the membrane. Certain oligomeric Aß aggregates are known to induce membrane perturbations and the structure of these oligomers-and their membrane-perturbing effects-can be modulated by metal ion binding. If the bound metal ions are redox active, as e.g., Cu and Fe ions are, they will generate harmful reactive oxygen species (ROS) just outside the membrane surface. Thus, the membrane damage incurred by toxic Aß oligomers is likely aggravated when redox-active metal ions are present. The combined interactions between Aß oligomers, metal ions, and biomembranes may be responsible for at least some of the neuronal death in AD patients.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Membrana Celular/metabolismo , Cobre/metabolismo , Ferro/metabolismo , Doença de Alzheimer/metabolismo , Sequência de Aminoácidos , Cobre/química , Humanos , Ferro/química , Ligação Proteica , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo
14.
J Am Chem Soc ; 140(26): 8138-8146, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29708745

RESUMO

In Alzheimer's disease, amyloid-ß (Aß) plaques and tau neurofibrillary tangles are the two pathological hallmarks. The co-occurrence and combined reciprocal pathological effects of Aß and tau protein aggregation have been observed in animal models of the disease. However, the molecular mechanism of their interaction remain unknown. Using a variety of biophysical measurements, we here show that the native full-length tau protein solubilizes the Aß40 peptide and prevents its fibrillation. The tau protein delays the amyloid fibrillation of the Aß40 peptide at substoichiometric ratios, showing different binding affinities toward the different stages of the aggregated Aß40 peptides. The Aß monomer structure remains random coil in the presence of tau, as observed by nuclear magnetic resonance (NMR), circular dichroism (CD) spectroscopy and photoinduced cross-linking methods. We propose a potential interaction mechanism for the influence of tau on Aß fibrillation.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/química , Dicroísmo Circular , Humanos , Microscopia de Força Atômica , Ressonância Magnética Nuclear Biomolecular , Tamanho da Partícula , Propriedades de Superfície , Proteínas tau/química
15.
Anal Chem ; 90(7): 4370-4379, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29506379

RESUMO

Resolving the heterogeneity of particle populations by size is important when the particle size is a signature of abnormal biological properties leading to disease. Accessing size heterogeneity in the sub-micrometer regime is particularly important to resolve populations of subcellular species or diagnostically relevant bioparticles. Here, we demonstrate a ratchet migration mechanism capable of separating sub-micrometer sized species by size and apply it to biological particles. The phenomenon is based on a deterministic ratchet effect, is realized in a microfluidic device, and exhibits fast migration allowing separation in tens of seconds. We characterize this phenomenon extensively with the aid of a numerical model allowing one to predict the speed and resolution of this method. We further demonstrate the deterministic ratchet migration with two sub-micrometer sized beads as model system experimentally as well as size-heterogeneous mouse liver mitochondria and liposomes as model system for other organelles. We demonstrate excellent agreement between experimentally observed migration and the numerical model.


Assuntos
Lipossomos/isolamento & purificação , Técnicas Analíticas Microfluídicas , Mitocôndrias Hepáticas/química , Organelas/química , Animais , Lipossomos/química , Camundongos , Tamanho da Partícula , Propriedades de Superfície
16.
J Biol Chem ; 291(32): 16485-93, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27325705

RESUMO

Many protein folding diseases are intimately associated with accumulation of amyloid aggregates. The amyloid materials formed by different proteins/peptides share many structural similarities, despite sometimes large amino acid sequence differences. Some amyloid diseases constitute risk factors for others, and the progression of one amyloid disease may affect the progression of another. These connections are arguably related to amyloid aggregates of one protein being able to directly nucleate amyloid formation of another, different protein: the amyloid cross-interaction. Here, we discuss such cross-interactions between the Alzheimer disease amyloid-ß (Aß) peptide and other amyloid proteins in the context of what is known from in vitro and in vivo experiments, and of what might be learned from clinical studies. The aim is to clarify potential molecular associations between different amyloid diseases. We argue that the amyloid cascade hypothesis in Alzheimer disease should be expanded to include cross-interactions between Aß and other amyloid proteins.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Agregação Patológica de Proteínas/metabolismo , Animais , Humanos
17.
Eur Biophys J ; 46(8): 773-787, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28942583

RESUMO

Albumin is the most abundant plasma protein and as such has been the subject of many studies using a variety of techniques. One of them, capable of monitoring the conformational changes and the binding capacity of proteins, is electron paramagnetic resonance spectroscopy (EPR) spin labeling. To date, albumin has been investigated using a number of different spin labels, mostly spin-labeled fatty acids (SLFAs). However, albumin can bind up to seven equivalents of fatty acids, making it difficult to determine which parts of the molecule undergo conformational changes. To obtain information from a specific site on a protein, spin labels that bind to free cysteine residues may be used. In this work, the applicability of such a label, 3-maleimido proxyl (5-MSL), was evaluated for monitoring conformational changes of bovine serum albumin (BSA) at different temperatures and pH values. Also, the effect of ethanol, reactive oxygen species (hydrogen peroxide and superoxide radical), and the binding of ligands specific for albumin, namely fatty acids, and several drugs were evaluated. The results indicate that the labeling of albumin at its free cysteine residue (Cys-34) using 5-MSL may successfully be used for the detection of conformational changes, even in the case of the subtle alterations induced by ligand binding.


Assuntos
Óxidos N-Cíclicos/química , Soroalbumina Bovina/química , Marcadores de Spin , Animais , Bovinos , Espectroscopia de Ressonância de Spin Eletrônica , Etanol/farmacologia , Ácidos Graxos/farmacologia , Peróxido de Hidrogênio/farmacologia , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Desdobramento de Proteína/efeitos dos fármacos , Superóxidos/farmacologia , Temperatura
18.
Anal Chem ; 88(11): 5920-7, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27149097

RESUMO

Efficient separations of particles with micron and submicron dimensions are extremely useful in preparation and analysis of materials for nanotechnological and biological applications. Here, we demonstrate a nonintuitive, yet efficient, separation mechanism for µm and subµm colloidal particles and organelles, taking advantage of particle transport in a nonlinear post array in a microfluidic device under the periodic action of electrokinetic and dielectrophoretic forces. We reveal regimes in which deterministic particle migration opposite to the average applied force occurs for a larger particle, a typical signature of deterministic absolute negative mobility (dANM), whereas normal response is obtained for smaller particles. The coexistence of dANM and normal migration was characterized and optimized in numerical modeling and subsequently implemented in a microfluidic device demonstrating at least 2 orders of magnitude higher migration speeds as compared to previous ANM systems. We also induce dANM for mouse liver mitochondria and envision that the separation mechanisms described here provide size selectivity required in future separations of organelles, nanoparticles, and protein nanocrystals.


Assuntos
Técnicas Analíticas Microfluídicas , Mitocôndrias Hepáticas/química , Nanopartículas/química , Organelas/química , Proteínas/química , Animais , Camundongos , Tamanho da Partícula , Proteínas/isolamento & purificação
19.
J Am Soc Nephrol ; 26(4): 805-16, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25145934

RESUMO

TGF-ß(1) is a pleotropic growth factor that mediates glomerulosclerosis and podocyte apoptosis, hallmarks of glomerular diseases. The expression of microRNA-21 (miR-21) is regulated by TGF-ß(1), and miR-21 inhibits apoptosis in cancer cells. TGF-ß(1)-transgenic mice exhibit accelerated podocyte loss and glomerulosclerosis. We determined that miR-21 expression increases rapidly in cultured murine podocytes after exposure to TGF-ß(1) and is higher in kidneys of TGF-ß(1)-transgenic mice than wild-type mice. miR-21-deficient TGF-ß(1)-transgenic mice showed increased proteinuria and glomerular extracellular matrix deposition and fewer podocytes per glomerular tuft compared with miR-21 wild-type TGF-ß(1)-transgenic littermates. Similarly, miR-21 expression was increased in streptozotocin-induced diabetic mice, and loss of miR-21 in these mice was associated with increased albuminuria, podocyte depletion, and mesangial expansion. In cultured podocytes, inhibition of miR-21 was accompanied by increases in the rate of cell death, TGF-ß/Smad3-signaling activity, and expression of known proapoptotic miR-21 target genes p53, Pdcd4, Smad7, Tgfbr2, and Timp3. In American-Indian patients with diabetic nephropathy (n=48), albumin-to-creatinine ratio was positively associated with miR-21 expression in glomerular fractions (r=0.6; P<0.001) but not tubulointerstitial fractions (P=0.80). These findings suggest that miR-21 ameliorates TGF-ß(1) and hyperglycemia-induced glomerular injury through repression of proapoptotic signals, thereby inhibiting podocyte loss. This finding is in contrast to observations in murine models of tubulointerstitial kidney injury but consistent with findings in cancer models. The aggravation of glomerular disease in miR-21-deficient mice and the positive association with albumin-to-creatinine ratio in patients with diabetic nephropathy support miR-21 as a feedback inhibitor of TGF-ß signaling and functions.


Assuntos
Albuminúria/metabolismo , Nefropatias Diabéticas/metabolismo , Glomérulos Renais/metabolismo , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Adulto , Animais , Apoptose , Células Cultivadas , Matriz Extracelular/metabolismo , Feminino , Humanos , Glomérulos Renais/patologia , Masculino , Camundongos Endogâmicos DBA , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Smad/metabolismo
20.
J Biol Chem ; 289(40): 27766-75, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25100721

RESUMO

Many factors are known to influence the oligomerization, fibrillation, and amyloid formation of the Aß peptide that is associated with Alzheimer disease. Other proteins that are present when Aß peptides deposit in vivo are likely to have an effect on these aggregation processes. To separate specific versus broad spectrum effects of proteins on Aß aggregation, we tested a series of proteins not reported to have chaperone activity: catalase, pyruvate kinase, albumin, lysozyme, α-lactalbumin, and ß-lactoglobulin. All tested proteins suppressed the fibrillation of Alzheimer Aß(1-40) peptide at substoichiometric ratios, albeit some more effectively than others. All proteins bound non-specifically to Aß, stabilized its random coils, and reduced its cytotoxicity. Surprisingly, pyruvate kinase and catalase were at least as effective as known chaperones in inhibiting Aß aggregation. We propose general mechanisms for the broad-spectrum inhibition Aß fibrillation by proteins. The mechanisms we discuss are significant for prognostics and perhaps even for prevention and treatment of Alzheimer disease.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Chaperonas Moleculares/metabolismo , Agregados Proteicos , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Humanos , Agregação Patológica de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA