Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 287: 120520, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38242489

RESUMO

The human ventral occipito-temporal cortex (VOTC) has evolved into specialized regions that process specific categories, such as words, tools, and animals. The formation of these areas is driven by bottom-up visual and top-down nonvisual experiences. However, the specific mechanisms through which top-down nonvisual experiences modulate category-specific regions in the VOTC are still unknown. To address this question, we conducted a study in which participants were trained for approximately 13 h to associate three sets of novel meaningless figures with different top-down nonvisual features: the wordlike category with word features, the non-wordlike category with nonword features, and the visual familiarity condition with no nonvisual features. Pre- and post-training functional MRI (fMRI) experiments were used to measure brain activity during stimulus presentation. Our results revealed that training induced a categorical preference for the two training categories within the VOTC. Moreover, the locations of two training category-specific regions exhibited a notable overlap. Remarkably, within the overlapping category-specific region, training resulted in a dissociation in activation intensity and pattern between the two training categories. These findings provide important insights into how different nonvisual categorical information is encoded in the human VOTC.


Assuntos
Aprendizagem , Lobo Temporal , Humanos , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Reconhecimento Psicológico , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos
2.
J Magn Reson Imaging ; 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38146647

RESUMO

BACKGROUND: Resting-state functional MRI (rs-fMRI) has identified static changes of local brain activity among patients with intracerebral hemorrhage (ICH). However, the dynamic and concordance-related characteristics of brain activity remain unclear. PURPOSE: To investigate static, dynamic, and concordance-related features of the regional brain activity of young non-disabled ICH patients. STUDY TYPE: Prospective. SUBJECTS: Thirty-three ICH patients (modified Rankin Scale score ≤2, 21% female, 46.36 ± 6.53) and 33 matched healthy controls (HCs) (21% female, 47.64 ± 6.16). FIELD STRENGTH/SEQUENCE: 3-T, rs-fMRI using gradient echo-planar imaging, T1-weighted imaging. ASSESSMENT: Neuropsychological and rs-fMRI data were acquired from all participants. Amplitude of low-frequency fluctuations (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo), voxel-mirrored homotopic connectivity, global signal correlation (GSCorr) and degree centrality (DC), and their dynamic and concordance-related changes with sliding window analysis were calculated based on rs-fMRI data at a whole-brain level. The burden of cerebral small vascular diseases (cSVD) was assessed by cSVD scores. All hemorrhage lesions were delineated on normalized T1 images. STATISTICAL TESTS: Multiple regression models, a voxel-level uncorrected P < 0.001, a cluster-level false discovery rate (FDR) corrected q < 0.05, a re-corrected qFDR <0.05 were considered significant. Pearson or Spearman correlation analyses between fMRI data and neurocognitive performance were performed. RESULTS: Compared to HCs, ICH patients showed significant abnormal changes of ALFF, dynamic ALFF, fALFF, ReHo, dynamic ReHo, GSCorr, DC, and voxel-wise concordance in multiple brain regions mainly including the bilateral cerebellar hemispheres, ipsilesional thalamus, and bilateral middle cingulum gyrus. The ALFF in the cerebellar posterior lobe and thalamus were significantly associated with attention (r = -0.481) and executive function (rho = -0.521) in ICH patients. DATA CONCLUSION: Young non-disabled ICH patients exhibit static, dynamic, and concordance-related alterations of local brain activity, part of which shows associations with cognitive functions. These findings may help comprehensively understand the mechanism of cognitive impairment after ICH. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 3.

3.
Neuroimage ; 215: 116838, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32298792

RESUMO

The human ventral visual cortex is functionally organized into different domains that sensitively respond to different categories, such as words and objects. There is heated debate over what principle constrains the locations of those domains. Taking the visual word form area (VWFA) as an example, we tested whether the word preference in this area originates from the bottom-up processes related to word shape (the shape hypothesis) or top-down connectivity of higher-order language regions (the connectivity hypothesis). We trained subjects to associate identical, meaningless, non-word-like figures with high-level features of either words or objects. We found that the word-feature learning for the figures elicited the neural activation change in the VWFA, and learning performance effectively predicted the activation strength of this area after learning. Word-learning effects were also observed in other language areas (i.e., the left posterior superior temporal gyrus, postcentral gyrus, and supplementary motor area), with increased functional connectivity between the VWFA and the language regions. In contrast, object-feature learning was not associated with obvious activation changes in the language regions. These results indicate that high-level language features of stimuli can modulate the activation of the VWFA, providing supportive evidence for the connectivity hypothesis of words processing in the ventral occipitotemporal cortex.


Assuntos
Aprendizagem/fisiologia , Linguística/métodos , Rede Nervosa/fisiologia , Estimulação Luminosa/métodos , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/diagnóstico por imagem , Córtex Visual/diagnóstico por imagem , Adulto Jovem
4.
Ann Clin Transl Neurol ; 11(6): 1567-1578, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38725138

RESUMO

OBJECTIVE: Previous resting-state functional magnetic resonance imaging studies on intracerebral hemorrhage patients have focused more on the static characteristics of brain activity, while the time-varying effects during scanning have received less attention. Therefore, the current study aimed to explore the dynamic functional network connectivity changes of intracerebral hemorrhage patients. METHODS: Using independent component analysis, the sliding window approach, and the k-means clustering analysis method, different dynamic functional network connectivity states were detected from resting-state functional magnetic resonance imaging data of 37 intracerebral hemorrhage patients and 44 healthy controls. The inter-group differences in dynamic functional network connectivity patterns and temporal properties were investigated, followed by correlation analyses between clinical scales and abnormal functional indexes. RESULTS: Ten resting-state networks were identified, and the dynamic functional network connectivity matrices were clustered into four different states. The transition numbers were decreased in the intracerebral hemorrhage patients compared with healthy controls, which was associated with trail making test scores in patients. The cerebellar network and executive control network connectivity in State 1 was reduced in patients, and this abnormal dynamic functional connectivity was positively correlated with the animal fluency test scores of patients. INTERPRETATION: The current study demonstrated the characteristics of dynamic functional network connectivity in intracerebral hemorrhage patients and revealed that abnormal temporal properties and functional connectivity may be related to the performance of different cognitive domains after ictus. These results may provide new insights into exploring the neurocognitive mechanisms of intracerebral hemorrhage.


Assuntos
Hemorragia Cerebral , Imageamento por Ressonância Magnética , Rede Nervosa , Humanos , Hemorragia Cerebral/fisiopatologia , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/complicações , Masculino , Feminino , Adulto , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Conectoma , Pessoa de Meia-Idade , Função Executiva/fisiologia , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA