Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 160(22)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874102

RESUMO

Experimental and numerical studies were performed on the vibrational energy relaxation in shock-heated CO/N2/Ar mixtures. A laser absorption technique was applied to the time-dependent rovibrational temperature time-history measurements. The vibrational relaxation data of reflected-shock-heated CO were summarized at 1720-3230 K. In shock-tube experiments, the rotational temperature of CO quickly reached equilibrium, whereas a relaxation process was found in the time-dependent vibrational temperature. For the mixture with 1.0% CO and 10.0% N2, the vibrational excitation caused a decrease in the macroscopic thermodynamic temperature of the test gas. In the simulations, the state-to-state (StS) approach was employed, where the vibrational energy levels of CO and N2 are treated as pseudo-species. The vibrational state-specific inelastic rate coefficients of N2-Ar collisions were calculated using the mixed quantum-classical method based on a newly developed three-dimensional potential energy surface. The StS predictions agreed well with the measurements, whereas deviations were found between the Schwartz-Slawsky-Herzfeld formula predictions and the measurements. The Millikan-White vibrational relaxation data of the N2-Ar system were found to have the most significant impact on the model predictions via sensitivity analysis. The vibrational relaxation data of the N2-Ar system were then modified according to the experimental data and StS results, providing an indirect way to optimize the vibrational relaxation data of a specific system. Moreover, the vibrational distribution functions of CO and N2 and the effects of the vibration-vibration-translation energy transfer path on the thermal nonequilibrium behaviors were highlighted.

2.
J Chem Phys ; 159(23)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38108486

RESUMO

The time-dependent rotational and vibrational temperatures were measured to study the shock-heated thermal nonequilibrium behaviors of CO with Ar, He, and H2 as collision partners. Three interference-free transition lines in the fundamental vibrational band of CO were applied to the fast, in situ, and state-specific measurements. Vibrational relaxation times of CO were summarized over a temperature range of 1110-2820 K behind reflected shocks. The measured rotational temperature instantaneously reached an equilibrium state behind shock waves. The measured vibrational temperature experienced a relaxation process before reaching the equilibrium state. The measured vibrational temperature time histories were compared with predictions based on the Landau-Teller model and the state-to-state approach. The state-to-state approach treats the vibrational energy levels of CO as pseudo-species and accurately describes the detailed thermal nonequilibrium processes behind shock waves. The datasets of state-specific inelastic rate coefficients of CO-Ar, CO-He, CO-CO, and CO-H2 collisions were calculated in this study using the mixed quantum-classical method and the semiclassical forced harmonic oscillator model. The predictions based on the state-to-state approach agreed well with the measured data and nonequilibrium (non-Boltzmann) vibrational distributions were found in the post-shock regions, while the Landau-Teller model predicted slower vibrational temperature time histories than the measured data. Modifications were applied to the Millikan-White vibrational relaxation data of the CO-Ar and CO-H2 systems to improve the performance of the Landau-Teller model. In addition, the thermal nonequilibrium processes behind incident shocks, the acceleration effects of H2O on the relaxation process of CO, and the characterization of vibrational temperature were highlighted.

3.
J Chem Phys ; 149(13): 134306, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30292202

RESUMO

The incipient process of water vapor condensation around an insoluble nanoscale particle is studied by a molecular dynamics method, and the emphasis is placed on the effects of particle surface curvature and wettability. With a high initial saturation, two different linear nucleation stages are observed. At the first stage, clusters are formed by the water molecules adsorbed on the surface such that the nucleation rate is significantly affected by both water molecule flux toward the surface and adsorption probability. The former decreases with the surface curvature, and the latter is in proportion to the wettability. At the second stage, the nucleation rate is enhanced by the contribution of homogeneous clusters adsorbed to the surface and reduced by cluster merging because of the space limitation on small particles. As a result, the nucleation rate is basically not affected by the particle size. The average size of clusters keeps constant for a while, then starts to grow with a gradually increased growth rate. It is concluded that both curvature and wettability of the particle surface promote the cluster growing.

4.
Phys Rev Lett ; 119(1): 014501, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28731767

RESUMO

We report the first measurements of the perturbation amplitude in the converging Richtmyer-Meshkov instability in a semiannular shock tube. At early stages, the amplitude growth agrees well with the impulsive model considering the geometrical convergence effect. A quick decrease of the growth rate at late time, even to be negative, before the reshock is observed for the first time. The reduction of the growth rate is ascribed to the Rayleigh-Taylor stabilization caused by the interface deceleration motion only presented in the converging circumstance. By reasonably evaluating the Rayleigh-Taylor stabilization, a modified model based on the Bell equation is proposed, which well predicts the perturbation growth in a converging geometry from early to late stages before the reshock. It is also found that the flow compressibility is significant in the converging Richtmyer-Meshkov instability.

5.
J Chem Phys ; 140(2): 024708, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24437903

RESUMO

A kinetic model is developed to describe the heterogeneous condensation of vapor on an insoluble spherical particle. This new model considers two mechanisms of cluster growth: direct addition of water molecules from the vapor and surface diffusion of adsorbed water molecules on the particle. The effect of line tension is also included in the model. For the first time, the exact expression of evaporation coefficient is derived for heterogeneous condensation of vapor on an insoluble spherical particle by using the detailed balance. The obtained expression of evaporation coefficient is proved to be also correct in the homogeneous condensation and the heterogeneous condensation on a planar solid surface. The contributions of the two mechanisms to heterogeneous condensation including the effect of line tension are evaluated and analysed. It is found that the cluster growth via surface diffusion of adsorbed water molecules on the particle is more important than the direct addition from the vapor. As an example of our model applications, the growth rate of the cap shaped droplet on the insoluble spherical particle is derived. Our evaluation shows that the growth rate of droplet in heterogeneous condensation is larger than that in homogeneous condensation. These results indicate that an explicit kinetic model is benefit to the study of heterogeneous condensation on an insoluble spherical particle.

6.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39207192

RESUMO

A shock-tube facility capable of generating a planar shock with the Mach number higher than 3.0 is developed for studying Richtmyer-Meshkov instability induced by a strong shock wave (referred to as strong-shock RMI). Shock enhancement is realized through the convergence of shock within a channel with the profile determined by using shock dynamics theory. The facility is designed considering the repeatability of shock generation, transition of shock profile, and effects of viscosity and flow choking. By measuring the dynamic pressure of the tube flow using pressure sensors and capturing the shock movement through the high-speed shadowing technique, the reliability and repeatability of the shock tube for generating a strong planar shock are first verified. Particular emphasis is then placed on the ability of the facility to study strong-shock RMI, for which a thin polyester film is adopted to form the initial interface separating gases of different densities. The results indicate that the shock tube is reliable for conducting strong-shock RMI experiments.

7.
Phys Rev E ; 95(1-1): 013107, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28208332

RESUMO

The Richtmyer-Meshkov (RM) instability of a nominally flat interface (N_{2}/SF_{6}) subjected to a rippled shock, as the counterpart of a corrugated interface interacting with a planar shock, is studied experimentally in a vertical shock tube using both schlieren photography and fog visualization diagnostics. The nonplanar incident shock wave is produced by a planar shock diffracting around a rigid cylinder, and the flat interface is created by a membraneless technique. Three different distances η (the ratio of spacing from cylinder to interface over cylinder diameter) are considered. Schlieren images indicate that the nonplanar incident shock can be divided into three different segments separated by two triple points. Fog visualization pictures show the formation of overall "Λ" shaped interface structures and a N_{2} cavity at the center and two interface steps at both sides. With the increase of the dimensionless time, the dimensionless interface amplitude increases as well as the penetration depth of the cavity, and both curves exhibit reasonable collapse for different η numbers. Through equating the preinterface perturbation of the rippled shock with a preshock perturbation of a corrugated interface, the growth rate of this instability is found to be noticeably smaller than that of the standard RM instability.

8.
Nat Commun ; 8(1): 287, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821851

RESUMO

Various methods have been exploited to replicate nacre features into artificial structural materials with impressive structural and mechanical similarity. However, it is still very challenging to produce nacre-mimetics in three-dimensional bulk form, especially for further scale-up. Herein, we demonstrate that large-sized, three-dimensional bulk artificial nacre with comprehensive mimicry of the hierarchical structures and the toughening mechanisms of natural nacre can be facilely fabricated via a bottom-up assembly process based on laminating pre-fabricated two-dimensional nacre-mimetic films. By optimizing the hierarchical architecture from molecular level to macroscopic level, the mechanical performance of the artificial nacre is superior to that of natural nacre and many engineering materials. This bottom-up strategy has no size restriction or fundamental barrier for further scale-up, and can be easily extended to other material systems, opening an avenue for mass production of high-performance bulk nacre-mimetic structural materials in an efficient and cost-effective way for practical applications.Artificial materials that replicate the mechanical properties of nacre represent important structural materials, but are difficult to produce in bulk. Here, the authors exploit the bottom-up assembly of 2D nacre-mimetic films to fabricate 3D bulk artificial nacre with an optimized architecture and excellent mechanical properties.

9.
Phys Rev E ; 93(2): 023110, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26986416

RESUMO

The Richtmyer-Meshkov instability (RMI) of single-mode air-SF(6) interfaces is studied numerically and the emphasis is placed on the effect of the principal curvature on the early evolution of the shocked interface. Two three-dimensional initial interfaces with opposite (3D-) and identical (3D+) principal curvatures and a traditional two-dimensional interface (2D) are considered. The weighted essentially nonoscillatory scheme and the Level-Set method combined with the real ghost fluid method are adopted. For comparison, perturbations on the initial interfaces with the same wavelength and amplitude in the symmetry plane are employed. The numerical results confirm the experimental finding that the growth rate of perturbations in the symmetry plane at the linear stage in the 3D- case is much smaller than that in the 2D and 3D+ cases. The difference among them can be ascribed to the different pressure and vorticity distributions associated with the principal curvatures of the initial interface. On the one hand, the high-pressure zones in the vicinity of the deformed interface are significantly different for three cases especially in the very beginning. The shock convergence and divergence at the interface are more severe in the 3D+ case than those in the 2D case, while the wave pattern in the 3D- case is more complex. On the other hand, the baroclinic vorticity distribution plays a leading role in the interface deformation of the 3D RMI after the passage of the planar shock. The accumulated vorticity changes the movement of the deformed interface and makes the local growth of perturbations different among three cases.

10.
Phys Rev E ; 93(1): 013101, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26871149

RESUMO

The Richmyer-Meshkov instability of a three-dimensional (3D) SF_{6}-air single-mode interface with a minimum-surface feature is investigated experimentally. The interface produced by the soap film technique is subjected to a planar shock and the evolution of the shocked interface is captured by time-resolved schlieren photography. Different from the light-heavy single-mode case, a phase inversion occurs in the shock-interface interaction and a bubblelike structure is observed behind the shocked interface, which may be ascribed to the difference in pressure perturbation at different planes. The superimposition of spikelike forward-moving jets forms a complex structure, indicating a distinctly 3D effect. Quantitatively, it is also found that the instability at the symmetry plane grows much slower than the prediction of two-dimensional linear model, but matches the extended 3D linear and nonlinear models accounting for the curvature effects. Therefore, the opposite curvatures of the 3D interface are beneficial for suppressing the growth of the instability.

11.
Nat Commun ; 7: 12920, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27676215

RESUMO

Low-density compressible materials enable various applications but are often hindered by structure-derived fatigue failure, weak elasticity with slow recovery speed and large energy dissipation. Here we demonstrate a carbon material with microstructure-derived super-elasticity and high fatigue resistance achieved by designing a hierarchical lamellar architecture composed of thousands of microscale arches that serve as elastic units. The obtained monolithic carbon material can rebound a steel ball in spring-like fashion with fast recovery speed (∼580 mm s-1), and demonstrates complete recovery and small energy dissipation (∼0.2) in each compress-release cycle, even under 90% strain. Particularly, the material can maintain structural integrity after more than 106 cycles at 20% strain and 2.5 × 105 cycles at 50% strain. This structural material, although constructed using an intrinsically brittle carbon constituent, is simultaneously super-elastic, highly compressible and fatigue resistant to a degree even greater than that of previously reported compressible foams mainly made from more robust constituents.

12.
Rev Sci Instrum ; 85(1): 015107, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24517812

RESUMO

A shock tube facility for generating a cylindrical converging shock wave is developed in this work. Based on the shock dynamics theory, a specific wall profile is designed for the test section of the shock tube to transfer a planar shock into a cylindrical one. The shock front in the converging part obtained from experiment presents a perfect circular shape, which proves the feasibility and reliability of the method. The time variations of the shock strength obtained from numerical simulation, experiment, and theoretical estimation show the desired converging effect in the shock tube test section. Particular emphasis is then placed on the problem of shock-interface interaction induced by cylindrical converging shock waves. For this purpose, membrane-less gas cylinder is adopted to form the interface between two different fluids while the laser sheet technique to visualize the flow field. The result shows that it is convenient to perform such experiments in this facility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA