RESUMO
The identifiable target effect refers to the preference for helping identified victims and punishing identifiable perpetrators compared with equivalent but unidentifiable counterparts. The identifiable target effect is often attributed to the heightened moral emotions evoked by identified targets. However, the specific neurocognitive processes that mediate and/or modulate this effect remain largely unknown. Here, we combined a third-party punishment game with brain imaging and computational modeling to unravel the neurocomputational underpinnings of the identifiable transgressor effect. Human participants (males and females) acted as bystanders and punished identified or anonymous wrongdoers. Participants were more punitive toward identified wrongdoers than anonymous wrongdoers because they took a vicarious perspective of victims and adopted lower reference points of inequity (i.e., more stringent norms) in the identified context than in the unidentified context. Accordingly, there were larger activity of the ventral anterior insula, more distinct multivariate neural patterns in the dorsal anterior insula and dorsal anterior cingulate cortex, and lower strength between ventral anterior insula and dorsolateral PFC and between dorsal anterior insula and ventral striatum connectivity in response to identified transgressors than anonymous transgressors. These findings implicate the interplay of expectancy violations, emotions, and self-interest in the identifiability effect. Last, individual differences in the identifiability effect were associated with empathic concern/social dominance orientation, activity in the precuneus/cuneus and temporo-parietal junction, and intrinsic functional connectivity of the dorsolateral PFC. Together, our work is the first to uncover the neurocomputational processes mediating identifiable transgressor effect and to characterize psychophysiological profiles modulating the effect.SIGNIFICANCE STATEMENT The identifiable target effect, more help to identified victims or stronger punishment to identifiable perpetrators, is common in daily life. We examined the neurocomputational mechanisms mediating/modulating the identifiability effect on third-party punishment by bridging literature from economics and cognitive neuroscience. Our findings reveal that identifiable transgressor effect is mediated by lower reference points of inequity (i.e., more stringent norms), which might be associated with a stronger involvement of the emotion processes and a weaker engagement of the analytic/deliberate processes. Furthermore, personality traits, altered brain activity, and intrinsic functional connectivity contribute to the individual variance in the identifiability effect. Overall, our study advances the understanding of the identifiability effect by shedding light on its component processes and modulating factors.
Assuntos
Encéfalo , Punição , Masculino , Feminino , Humanos , Punição/psicologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Emoções/fisiologia , Mapeamento Encefálico , Empatia , Imageamento por Ressonância MagnéticaRESUMO
Non-invasive neuroimaging has revealed specific network-based resting-state dynamics in the human brain, yet the underlying neurophysiological mechanism remains unclear. We employed intracranial electroencephalography to characterize local field potentials within the default mode network (DMN), frontoparietal network (FPN), and salience network (SN) in 42 participants. We identified stronger within-network phase coherence at low frequencies (θ and α band) within the DMN, and at high frequencies (γ band) within the FPN. Hidden Markov modeling indicated that the DMN exhibited preferential low frequency phase coupling. Phase-amplitude coupling (PAC) analysis revealed that the low-frequency phase in the DMN modulated the high-frequency amplitude envelopes of the FPN, suggesting frequency-dependent characterizations of intrinsic brain networks at rest. These findings provide intracranial electrophysiological evidence in support of the network model for intrinsic organization of human brain and shed light on the way brain networks communicate at rest.
Assuntos
Encéfalo , Rede Nervosa , Humanos , Masculino , Feminino , Adulto , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Rede de Modo Padrão/fisiologia , Rede de Modo Padrão/diagnóstico por imagem , Adulto Jovem , Eletrocorticografia , Eletroencefalografia/métodosRESUMO
Extensive behavioral and pedagogical studies emphasize the negative impact of foreign language reading anxiety on foreign language reading. This study investigated whether foreign language reading anxiety is correlated with dysregulation of attentional allocation while foreign language reading. We used event-related potential (ERP) indices as biomarkers to examine attention allocation between groups with high foreign language reading anxiety (HFLRA) and low foreign language reading anxiety (LFLRA) using a cue-target paradigm under conditions that posed high (valid condition) or low (invalid condition) expectations on target location. Behavioral results indicated that HFLRA individuals exhibited significantly lower accuracy compared to LFLRA individuals in both valid and invalid conditions. ERP analyses demonstrated that HFLRA individuals showed significant differences in attentional allocation compared to LFLRA individuals, as reflected by later N2 latency and stronger LPC amplitude, particularly in the invalid condition. Additionally, LFLRA individuals demonstrated a significant difference in N2 latency between valid and invalid conditions, which was not observed in HFLRA individuals. These findings suggest that HFLRA individuals experience inefficient attentional allocation during foreign language reading.
RESUMO
Cognitive processing relies on the functional coupling between the cerebrum and cerebellum. However, it remains unclear how the 2 collaborate in amnestic mild cognitive impairment (aMCI) patients. With functional magnetic resonance imaging techniques, we compared cerebrocerebellar functional connectivity during the resting state (rsFC) between the aMCI and healthy control (HC) groups. Additionally, we distinguished coupling between functionally corresponding and noncorresponding areas across the cerebrum and cerebellum. The results demonstrated decreased rsFC between both functionally corresponding and noncorresponding areas, suggesting distributed deficits of cerebrocerebellar connections in aMCI patients. Increased rsFC was also observed, which were between functionally noncorresponding areas. Moreover, the increased rsFC was positively correlated with attentional scores in the aMCI group, and this effect was absent in the HC group, supporting that there exists a compensatory mechanism in patients. The current study contributes to illustrating how the cerebellum adjusts its coupling with the cerebrum in individuals with cognitive impairment.
Assuntos
Cérebro , Disfunção Cognitiva , Humanos , Telencéfalo , Cerebelo , Nível de SaúdeRESUMO
In real life, it is not unusual that we face potential threats (i.e., physical stimuli and environments that may cause harm or danger) with other individuals together, yet it remains largely unknown how threat-induced anxious feelings influence prosocial behaviors such as resource sharing. In this study, we investigated this question by combining functional magnetic resonance imaging and a novel paradigm. Together with an anonymous partner, each participant faced the possibility of receiving a 10-s noise administration, which had a low or high probability to be a threat (i.e., the intensity of noise can induce a high level of unpleasantness). Each participant first reported her/his immediate feeling of anxiety about the current situation (being threatened by the unpleasant noise), then decided how to split a number of resources (which could relieve the noise) between her/him and the partner. Behavioral results revealed that the participants showed a selfish bias in the threat conditions than in the safe conditions, and that self-reported anxiety feeling significantly predicted this bias. Functional magnetic resonance imaging results revealed that: (1) the activation level of the anterior insula was correlated with self-reported anxiety and (2) the connectivity between the anterior insula and the temporoparietal junction was sensitive to the modulating effect of anxiety on the selfish bias. These findings indicate the neural correlates of the association between threat-induced anxiety and prosocial tendencies in social interactions.
Assuntos
Transtornos de Ansiedade , Ansiedade , Humanos , Masculino , Feminino , Ansiedade/diagnóstico por imagem , Emoções/fisiologia , Autorrelato , Imageamento por Ressonância Magnética/métodosRESUMO
The cognitive and behavioral development of children and adolescents is closely related to the maturation of brain morphology. Although the trajectory of brain development has been depicted in detail, the underlying biological mechanism of normal cortical morphological development in childhood and adolescence remains unclear. By combining the Allen Human Brain Atlas dataset with two single-site magnetic resonance imaging data including 427 and 733 subjects from China and the United States, respectively, we performed partial least squares regression and enrichment analysis to explore the relationship between the gene transcriptional expression and the development of cortical thickness in childhood and adolescence. We found that the spatial model of normal cortical thinning during childhood and adolescence is associated with genes expressed predominantly in astrocytes, microglia, excitatory and inhibitory neurons. Top cortical development-related genes are enriched for energy-related and DNA-related terms and are associated with psychological and cognitive disorders. Interestingly, there is a great deal of similarity between the findings derived from the two single-site datasets. This fills the gap between early cortical development and transcriptomes, which promotes an integrative understanding of the potential biological neural mechanisms.
Assuntos
Córtex Cerebral , Afinamento Cortical Cerebral , Criança , Humanos , Adolescente , Córtex Cerebral/patologia , Afinamento Cortical Cerebral/patologia , Encéfalo , Neurônios , Imageamento por Ressonância Magnética/métodosRESUMO
Resource scarcity challenges individuals' willingness to share limited resources with other people. Still, lots of field studies and laboratory experiments have shown that sharing behaviors do not disappear under scarcity. Rather, some individuals are willing to share their scarce resources with others in a similar way as when the resource is abundant, which is crucial for the maintenance and development of human society. Here, we designed a novel paradigm in which subjects decided whether (and how much) to share an amount of "relieving resources" for counteracting unpleasant noises, which mimics real-life situations that people cost their own resources to help others escape from adversity. Overall, the robustness of resource sharing under scarcity was positively correlated with individual level of the cognitive component of empathy across two independent experiments. Resource insufficiency modulated the activations of several brain regions (including the TPJ, mPFC, and PCC) as well as the functional connection (from the rTPJ to the mPFC) within the mentalizing brain network, but the modulatory effect decreased as a function of cognitive empathy. We also applied the administration of oxytocin and found significant effects on sharing behavior among individuals with a higher level of cognitive empathy, but not their low-level counterparts. These findings highlight the importance of empathy to resource sharing under scarcity and explain the underlying neurobiological mechanisms.
Assuntos
Empatia , Imageamento por Ressonância Magnética , Humanos , Encéfalo , Mapeamento Encefálico , CogniçãoRESUMO
Anticipation plays an important role in cognitive control and related psychiatric disorders such as anxiety. However, anticipation processing of conflicts in anxious individuals and the underlying brain mechanisms remain unknown. Using a newly designed cue-flanker task, we observed faster responses to congruent flankers with certain cues in individuals with high trait anxiety (HTA) than those with low trait anxiety (LTA). Microstate analyses revealed less occurrence of cue-evoked microstates in HTA than LTA. Importantly, the less occurrence of specific state was correlated to the larger flanker effect in HTA, suggesting that deficient conflict control in anxiety is associated with abnormal vigilance-related dynamic processing during anticipation. Delta-beta coupling at anticipation stage mediated the association between the level of anxiety and reaction time in conflict processing with uncertain cues in HTA, suggesting the mediatory role of delta-beta coupling in anticipatory conflict processing of anxious individuals. These results suggest hyperactive anticipatory processing of goal-relevant information for the upcoming conflict in anxious individuals. Our findings provide neurocognitive evidence for altered anticipatory cognitive control in anxious individuals and have important implications for diagnosis and treatment of anxiety-related disorders.
Assuntos
Ansiedade , Sinais (Psicologia) , Ansiedade/psicologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , IncertezaRESUMO
Multiple areas in the cerebellum have been reported to be engaged in reading. However, how these regions cooperate with the reading-related areas in the cerebrum remains unclear. Here, brain images of fifty-two adults were acquired via functional magnetic resonance imaging. By comparing the cerebellar activation across three localization tasks targeting orthographic, phonological, and semantic processing, we first identified three different reading-related areas in the cerebellum, biased toward orthography, phonology, and semantics, respectively. Then, functional connectivity (FC) analyses demonstrated that the mean FC between functionally corresponding areas across the cerebrum and cerebellum was greater than that between noncorresponding areas during silent word reading. FC patterns of functionally corresponding areas could significantly predict reading speed, with the FC driven from orthographic and semantic areas contributing the most. Effective FC analyses further showed that orthographic and semantic areas in the cerebellum had selective and direct connectivity to areas in the cerebrum with similar functional specificity. These results suggest that reading-related areas vary in their functions to reading, and cooperation between areas with corresponding functions was greater than that between noncorresponding areas. These findings emphasize the importance of functional cooperation between the cerebrum and cerebellum during reading from a new perspective.
Assuntos
Cerebelo , Cérebro , Leitura , Mapeamento Encefálico , Cerebelo/diagnóstico por imagem , Cerebelo/fisiologia , Cérebro/diagnóstico por imagem , Cérebro/fisiologia , Imageamento por Ressonância Magnética , Semântica , Humanos , AdultoRESUMO
Autobiographical memory (AM) is an important psychological phenomenon that has significance for self-development and mental health. The psychological mechanisms of emotional AM retrieval and their association with individual emotional symptoms remain largely unclear in the literature. For this purpose, the current study provided cue words to elicit emotional AMs. Event-related potentials (ERPs) associated with the retrieval process of AMs were recorded and analyzed. We found that the ERP component N400 was sensitive to both emotional valence and retrieval state, such that its amplitude was larger for negative compared to positive AMs, and larger responses for unrecalled compared to recalled AMs. Further, the N400 amplitude in the positive recalled condition was correlated with individual difference in depression (measured by the Beck Depression Inventory). Another ERP component, the late positive potential (LPP), was also sensitive to emotional valence, such that its amplitude was larger (i.e., more positive-going) for positive compared to negative cues. No significant effect was observed on the early ERP components P1, N1, or P2. The current findings bring new understanding on the difference between positive and negative AMs retrieval in the time domain. Also, the importance of this difference to the individual level of depression is worth noting.
Assuntos
Eletroencefalografia , Memória Episódica , Humanos , Masculino , Feminino , Potenciais Evocados/fisiologia , Emoções/fisiologia , Rememoração Mental/fisiologiaRESUMO
To optimize our decisions, we may change our mind by utilizing social information. Here, we examined how changes of mind were modulated by Social Misalignment Sensitivity (SMS), egocentric tendency, and decision preferences in a decision-making paradigm including both risk and social information. Combining functional magnetic resonance imaging with computational modeling, we showed that both SMS and egocentric tendency modulated changes of mind under the influence of social information. While SMS was represented in the dorsal anterior cingulate cortex (dACC) and superior parietal gyrus (SPG) in the socially aligned situation, a distributed brain network was activated in the misaligned condition, including not only the dACC and SPG but also superior frontal gyrus and precuneus. These results suggest that SMS is related to a monitoring brain system, the scope of which varies according to the level of misalignment with social majority. The dorsolateral prefrontal cortex selectively interacted with SMS among the participants with a low switching threshold, indicating that its regulation on SMS may be sensitive to inter-individual variation. Our findings highlight the predominant roles of SMS and the prefrontal control system towards changes of mind under social influence.
Assuntos
Mapeamento Encefálico , Tomada de Decisões , Encéfalo/fisiologia , Tomada de Decisões/fisiologia , Giro do Cíngulo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologiaRESUMO
Motivated dishonesty is a typical social behavior varying from person to person. Resting-state fMRI (rsfMRI) is capable of identifying unique patterns from functional connectivity (FC) between brain regions. Recent work has built a link between brain networks in resting state to dishonesty in Western participants. To determine and reproduce the relevant neural patterns and build an interpretable model to predict dishonesty, we analyzed two conceptually similar datasets containing rsfMRI data with different dishonesty tasks. Both tasks implemented the information-passing paradigm, in which monetary rewards were employed to induce dishonesty. We applied connectome-based predictive modeling (CPM) to build a model among FC within and between four social brain networks (reward, self-referential, moral, and cognitive control). The CPM analysis indicated that FCs of social brain networks are predictive of dishonesty rate, especially FCs within reward network, and between self-referential and cognitive control networks. Our study offers an conceptual replication with integrated model to predict dishonesty with rsfMRI, and the results suggest that frequent motivated dishonest decisions may require the higher engagement of social brain regions.
Assuntos
Conectoma , Encéfalo , Conectoma/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Comportamento SocialRESUMO
The present study combined a novel hypothetical investment game with functional magnetic resonance imaging to examine how moral conflict biases our real decision preference when it is not obvious or explicitly presented. Investment projects were chosen based on their prior subjective morality ratings to fit into 2 categories: a high level of moral conflict (HMC) or a low level of moral conflict (LMC). Participants were instructed to invest high or low amounts of capital into different projects. Behavioral and neural responses during decision making were recorded and compared. Behaviorally, we observed a significant decision bias such that investments were lower for HMC projects than for LMC projects. At the neural level, we found that moral conflict-related activity in the anterior cingulate cortex (ACC) was higher in the HMC condition than in the LMC condition and that reward-related activity in bilateral striatum was lower. Dynamic causal modeling further suggested that the moral conflict detected in the ACC influenced final decisions by modulating the representation of subjective value through the ACC's connection to the reward system.
Assuntos
Mapeamento Encefálico , Giro do Cíngulo , Mapeamento Encefálico/métodos , Tomada de Decisões/fisiologia , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Princípios Morais , RecompensaRESUMO
Anxiety-related illnesses are highly prevalent in human society. Being able to identify neurobiological markers signaling high trait anxiety could aid the assessment of individuals with high risk for mental illness. Here, we applied connectome-based predictive modeling (CPM) to whole-brain resting-state functional connectivity (rsFC) data to predict the degree of trait anxiety in 76 healthy participants. Using a computational "lesion" approach in CPM, we then examined the weights of the identified main brain areas as well as their connectivity. Results showed that the CPM successfully predicted individual anxiety based on whole-brain rsFC, especially the rsFC between limbic areas and prefrontal cortex. The prediction power of the model significantly decreased from simulated lesions of limbic areas, lesions of the connectivity within limbic areas, and lesions of the connectivity between limbic areas and prefrontal cortex. Importantly, this neural model generalized to an independent large sample (n = 501). These findings highlight important roles of the limbic system and prefrontal cortex in anxiety prediction. Our work provides evidence for the usefulness of connectome-based modeling in predicting individual personality differences and indicates its potential for identifying personality factors at risk for psychopathology.
Assuntos
Ansiedade/diagnóstico por imagem , Ansiedade/psicologia , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Individualidade , Rede Nervosa/diagnóstico por imagem , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Valor Preditivo dos Testes , Adulto JovemRESUMO
As an important cognitive bias, the framing effect shows that our decision preferences are sensitive to the verbal description (i.e., frame) of options. This study focuses on the neural underpinnings of the social framing effect, which is based on decision-making regarding other people. A novel paradigm was used in which participants made a trade-off between economic benefits and the feelings of others. This decision was described as either a "harm" to, or "not helping," other persons in two conditions (Harm frame vs Help frame). Both human males and females were recruited. Participants behaved more prosocially for Harm frame compared with Help frame, resulting in a significant social framing effect. Using functional magnetic resonance imaging, Experiment 1 showed that the social framing effect was associated with stronger activation in the temporoparietal junction (TPJ), especially its right part. The functional connectivity between the right TPJ (rTPJ) and medial prefrontal cortex predicted the social framing effect on the group level. In Experiment 2, we used transcranial direct current stimulation to modulate the activity of the rTPJ and found that the social framing effect became more prominent under anodal (excitatory) stimulation, while the nonsocial framing effect elicited by the economic gain/loss gambling frame remained unaffected. The rTPJ results might be associated with moral conflicts modulated by the social consequences of an action or different levels of mentalizing with others under different frame conditions, but alternative interpretations are also worth noting. These findings could help elucidate the psychological mechanisms of the social framing effect.SIGNIFICANCE STATEMENT Previous studies have suggested that the framing effect is generated from an interaction between the amygdala and anterior cingulate cortex. This opinion, however, is based on findings from nonsocial framing tasks. Recent research has highlighted the importance of distinguishing between the social and nonsocial framing effects. The current study focuses on the social framing effect and finds out that the temporoparietal junction and its functional connectivity with the medial prefrontal cortex play a significant role. Additionally, modulating the activity of this region leads to changes in social (but not nonsocial) framing effect. Broadly speaking, these findings help understand the difference in neural mechanisms between social and nonsocial decision-making. Meanwhile, they might be illuminating to promote helping behavior in society.
Assuntos
Tonsila do Cerebelo/fisiologia , Tomada de Decisões/fisiologia , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Tonsila do Cerebelo/diagnóstico por imagem , Feminino , Humanos , Masculino , Córtex Pré-Frontal/diagnóstico por imagem , Adulto JovemRESUMO
Men and women process language differently, but how the brain functions to support this difference is poorly understood. A few studies reported sex influences on brain activation for language, whereas others failed to detect the difference at the functional level. Recent advances of brain network analysis have shown great promise in picking up brain connectivity differences between sexes, leading us to hypothesize that the functional connections among distinct brain regions for language may differ in males and females. To test this hypothesis, we scanned 58 participants' brain activities (28 males and 30 females) in a semantic decision task using functional magnetic resonance imaging. We found marked sex differences in dynamic interactions among language regions, as well as in functional segregation and integration of brain networks during language processing. The brain network differences were further supported by a machine learning analysis that accurately discriminated males from females using the multivariate patterns of functional connectivity. The sex-specific functional brain connectivity may constitute an essential neural basis for the long-held notion that men and women process language in different ways. Our finding also provides important implications for sex differences in the prevalence of language disorders, such as dyslexia and stuttering.
Assuntos
Encéfalo/fisiologia , Idioma , Vias Neurais/fisiologia , Caracteres Sexuais , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , SemânticaRESUMO
Anxious individuals tend to make pessimistic judgments in decision making under uncertainty. While this phenomenon is commonly attributed to risk aversion, loss aversion is a critical but often overlooked factor. In this study, we simultaneously examined risk aversion and loss aversion during decision making in high and low trait anxious individuals in a variable gain/loss gambling task during functional magnetic resonance imaging. Although high relative to low anxious individuals showed significant increased risk aversive behavior reflected by decreased overall gamble decisions, there was no group difference in subjective aversion to risk. Instead, loss aversion rather than risk aversion dominantly contributed to predict behavioral decisions, which was associated with attenuated functional connectivity between the amygdala-based emotional system and the prefrontal control regions. Our findings suggest a dominant role of loss aversion in maladaptive risk assessment of anxious individuals, underpinned by disorganization of emotion-related and cognitive-control-related brain networks.
Assuntos
Tonsila do Cerebelo/fisiopatologia , Ansiedade/fisiopatologia , Vias Neurais/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Algoritmos , Tonsila do Cerebelo/diagnóstico por imagem , Ansiedade/diagnóstico por imagem , Comportamento , Mapeamento Encefálico , Tomada de Decisões , Feminino , Jogo de Azar/diagnóstico por imagem , Jogo de Azar/psicologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Vias Neurais/diagnóstico por imagem , Testes Neuropsicológicos , Córtex Pré-Frontal/diagnóstico por imagem , Assunção de Riscos , Adulto JovemRESUMO
Impulsivity is a personality trait associated with many maladaptive behaviors. Trait impulsivity is typically divided into three different dimensions, including attentional impulsiveness, motor impulsiveness, and non-planning impulsiveness. In the present study, we examined the neuroanatomical basis of the multidimensional impulsivity trait. Eighty-four healthy participants were studied with structural magnetic resonance imaging. Multiple regression analyses revealed that the score of motor impulsiveness was negatively correlated with gray matter volumes of the right supplementary motor area and paracentral lobule. A machine-learning-based prediction analysis indicated that decreased gray matter volumes of the supplementary motor area and paracentral lobule strongly predicted the decrease in motor impulsiveness control. Our findings provide insights into the predictive role of motor brain structures in motor impulsivity and inhibition control.
Assuntos
Substância Cinzenta/diagnóstico por imagem , Comportamento Impulsivo/fisiologia , Atividade Motora/fisiologia , Córtex Motor/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão/fisiologia , Adulto JovemRESUMO
Moral contagion is a phenomenon in which individuals or objects take on the moral essence of the people who are associated with them. Previous studies have found that individuals value objects associated with moral and likable people more than those associated with immoral and dislikable people. However, the neural mechanisms underlying this "moral contagion effect" have not yet been explored. In the present study, we combined a novel "Second-hand Goods Pricing" paradigm with functional magnetic resonance imaging to (a) confirm the existence of the moral contagion effect on the hypothetical economic valuation of objects and (b) determine the neural substrates underlying it. Participants were shown second-hand goods, information regarding the moral valence of the previous owner, and an initial price assigned to the object by computer. The participants were then asked to adjust the initial price to one they deemed most reasonable. Behaviorally, we found a significant devaluation effect for immoral owners and a weaker reverse effect for moral owners. Imaging data showed that the devaluation effect was primarily driven by neural responses in the dorsal striatum (mainly the caudate nucleus) that were triggered by high initial prices assigned to the "contaminated" objects. Dynamic causal modeling revealed that the high initial price assigned to "contaminated" objects led to increased effective connectivity from the caudate nucleus to the ventromedial prefrontal cortex-the brain area that integrates values during decision making.
Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Economia Comportamental , Julgamento , Imageamento por Ressonância Magnética/métodos , Princípios Morais , Adulto , Encéfalo/fisiologia , Tomada de Decisões/fisiologia , Feminino , Humanos , Julgamento/fisiologia , Masculino , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Adulto JovemRESUMO
Trust constitutes a fundamental basis of human society and plays a pivotal role in almost every aspect of human relationships. Although enormous interest exists in determining the neuropsychological underpinnings of a person's propensity to trust utilizing task-based fMRI; however, little progress has been made in predicting its variations by task-free fMRI based on whole-brain resting-state functional connectivity (RSFC). Here, we combined a one-shot trust game with a connectome-based predictive modeling approach to predict propensity to trust from whole-brain RSFC. We demonstrated that individual variations in the propensity to trust were primarily predicted by RSFC rooted in the functional integration of distributed key nodes-caudate, amygdala, lateral prefrontal cortex, temporal-parietal junction, and the temporal pole-which are part of domain-general large-scale networks essential for the motivational, affective, and cognitive aspects of trust. We showed, further, that the identified brain-behavior associations were only evident for trust but not altruistic preferences and that propensity to trust (and its underlying neural underpinnings) were modulated according to the extent to which a person emphasizes general social preferences (i.e., horizontal collectivism) rather than general risk preferences (i.e., trait impulsiveness). In conclusion, the employed data-driven approach enables to predict propensity to trust from RSFC and highlights its potential use as an objective neuromarker of trust impairment in mental disorders.