RESUMO
Little information is available on influences of the conversion of dissolved organic phosphorus (DOP) to inorganic phosphorus (IP) on algal growth and subsequent behaviors of arsenate (As(V)) in Microcystis aeruginosa (M. aeruginosa). In this study, the influences factors on the conversion of three typical DOP types including adenosine-5-triphosphate disodium salt (ATP), ß-glycerophosphate sodium (ßP) and D-glucose-6-phosphate disodium salt (GP) were investigated under different extracellular polymeric secretions (EPS) ratios from M. aeruginosa, and As(V) levels. Thus, algal growth, As(V) biotransformation and microcystins (MCs) release of M. aeruginosa were explored in the different converted DOP conditions compared with IP. Results showed that the three DOP to IP without EPS addition became in favor of algal growth during their conversion. Compared with IP, M. aeruginosa growth was thus facilitated in the three converted DOP conditions, subsequently resulting in potential algal bloom particularly at arsenic (As) contaminated water environment. Additionally, DOP after conversion could inhibit As accumulation in M. aeruginosa, thus intracellular As accumulation was lower in the converted DOP conditions than that in IP condition. As(V) biotransformation and MCs release in M. aeruginosa was impacted by different converted DOP with their different types. Specifically, DMA concentrations in media and As(III) ratios in algal cells were promoted in converted ßP condition, indicating that the observed dissolved organic compositions from ßP conversion could enhance As(V) reduction in M. aeruginosa and then accelerate DMA release. The obtained findings can provide better understanding of cyanobacteria blooms and As biotransformation in different DOP as the main phosphorus source.
Assuntos
Arsênio , Microcystis , Microcystis/metabolismo , Microcistinas/metabolismo , Arseniatos/metabolismo , Matéria Orgânica Dissolvida , Eutrofização , Fósforo/metabolismo , Biotransformação , Arsênio/metabolismoRESUMO
Cadmium (Cd) and arsenic (As) are two of the most toxic elements. However, the chemical behaviors of these two elements are different, making it challenging to utilize a single adsorbent with high adsorption capacity for both Cd(II) and As(V) removal. To solve this problem, we synthesized HA/Fe-Mn oxides-loaded biochar (HFMB), a novel ternary material, to perform this task, wherein scanning electron microscopy (SEM) combined with EDS (SEM-EDS) was used to characterize its morphological and physicochemical properties. The maximum adsorption capacity of HFMB was 67.11â¯mg/g for Cd(II) and 35.59â¯mg/g for As(V), which is much higher compared to pristine biochar (11.06â¯mg/g, 0â¯mg/g for Cd(II) and As(V), respectively). The adsorption characteristics were investigated by adsorption kinetics and the effects of the ionic strength and pH of solutions. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) revealed that chelation and deposition were the adsorption mechanisms that bound Cd(II) to HFMB, while ligand exchange was the adsorption mechanism that bound As(V).
Assuntos
Arsênio/química , Cádmio/química , Poluentes Ambientais/química , Carvão Vegetal , Óxidos/químicaRESUMO
Titanium dioxide nanoparticles (nano-TiO2) are widely used in consumer products. Nano-TiO2 dispersion could, however, interact with metals and modify their behavior and bioavailability in aquatic environments. In this study, we characterized and examined arsenate (As(V)) accumulation, distribution, and toxicity in Daphnia magna in the presence of nano-TiO2. Nano-TiO2 acts as a positive carrier, significantly facilitating D. magna's ability to uptake As(V). As nano-TiO2 concentrations increased from 2 to 20 mg-Ti/L, total As increased by a factor of 2.3 to 9.8 compared to the uptake from the dissolved phase. This is also supported by significant correlations between arsenic (As) and titanium (Ti) signal intensities at concentrations of 2.0 mg-Ti/L nano-TiO2 (R = 0.676, P < 0.01) and 20.0 mg-Ti/L nano-TiO2 (R = 0.776, P < 0.01), as determined by LA-ICP-MS. Even though As accumulation increased with increasing nano-TiO2 concentrations in D. magna, As(V) toxicity associated with nano-TiO2 exhibited a dual effect. Compared to the control, the increased As was mainly distributed in BDM (biologically detoxified metal), but Ti was mainly distributed in MSF (metal-sensitive fractions) with increasing nano-TiO2 levels. Differences in subcellular distribution demonstrated that adsorbed As(V) carried by nano-TiO2 could dissociate itself and be transported separately, which results in increased toxicity at higher nano-TiO2 concentrations. Decreased As(V) toxicity associated with lower nano-TiO2 concentrations results from unaffected As levels in MSFs (when compared to the control), where several As components continued to be adsorbed by nano-TiO2. Therefore, more attention should be paid to the potential influence of nano-TiO2 on bioavailability and toxicity of cocontaminants.
Assuntos
Arseniatos , Daphnia , Animais , Arsênio , Nanopartículas Metálicas/toxicidade , Metais , Nanopartículas/toxicidade , Titânio/toxicidadeRESUMO
The effects of different dissolved organic phosphorus (DOP) associated with distinct iron conditions (iron deficient (dFe), ferric ions (Fe3+), and colloidal iron (CFe)) on algal growth and arsenate (As(V)) metabolism were systematically evaluated and compared in Microcystis aeruginosa. Two chemical forms of DOP (D-glucose-6-phosphate (GP) and phytic acid (PA)), as well as dissolved inorganic phosphorus (DIP), were employed as distinct phosphorus environments. The results revealed that As(V) metabolism of M. aeruginosa was more influenced by different phosphorus forms than by different iron conditions. Conversely, the release of microcystins in the media was found to be significantly more affected by the different phosphorus forms than by the iron conditions. Moreover, DOP was observed to promote arsenic (As) biotransformation, particularly the efflux of methylated As from a single algal cell, whereas DIP was found to primarily facilitate As(V) accumulation in algae. The total As metabolism amount per algal cell under PA was observed to be five times that observed under DIP and GP. The influence of iron conditions on the synthesis of algal metabolites was notable, as evidenced by the metabolites identified in algae of aliphatic (δ 1.28-1.68), humic acid-like and aromatic protein-like substances through 1H-NMR spectra and three-dimensional excitation-emission matrix fluorescence spectroscopy analysis. This impact was particularly notable at Fe3+ conditions, due to the role of Fe3+ as a micronutrient with highly bioavailable forms, which enhanced the synthesis of organic compounds in algae and promoted algal growth. Consequently, Fe3+ could inhibit As accumulation under DIP but promote it under DOP. The obtained results facilitate a more comprehensive understanding of the combined role of different phosphorus forms and iron conditions in algal bloom outbreaks and As(V) metabolism.
RESUMO
Tire wear particles (TWPs) are garnering increasing attention due to their potential adverse environmental impacts. However, precisely ascertaining TWPs content is challenging due to the complexity and variability of the tire components used in the environment, indicating that more reliable methods to accurately determine TWPs are necessary. In this study, driving school grounds were used as a case study to ascertain an appropriate and reliable method to determine TWPs levels based on a comprehensive comparison between different analytical results using styrene butadiene rubber (SBR), N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), and zinc (Zn) as analytical markers. Thermogravimetric analysis-Gas chromatography mass spectrometry (TGA-GC-MS) method reliability using SBR was verified and applied to measure TWPs levels on driving school grounds. By reliably converting SBR content to TWPs content, the average TWPs content on driving school grounds was measured at 190.13 ± 101.89 mg/g. The highest TWPs content was 281.83 ± 171.44 mg/g under the reverse stall parking driving programs, while the slope start and stop driving programs was lower at 208.36 ± 124.11 mg/g. Our findings highlight the importance of accurately determining TWPs content within specific environments while comprehensively exploring associated patterns of change to better understand the environmental risks of TWPs.
RESUMO
Tire and road wear microplastics (TRWMPs), as an important type of microplastics, have attracted increasing attention. However, current studies on their contamination within expressway tunnels remain limited. Therefore, we investigated the occurrence characteristics of TRWMPs in dusts from various tunnels, and combined contamination with heavy metals (HMs). The results showed that the abundance of TRWMPs in expressway tunnel dust (53,778 n/kg) was much higher than that sampled from other land use types (1360-4960 n/kg) in the same region. A large amount of polyamide was released into the environment along with wear particles from the vehicles. Also, the abundance of TRWMPs inside tunnels was greater than outside, and the proportion of large-size TRWMPs was higher inside tunnels. TRWMPs was symmetrically distributed with respect to the center of expressway tunnel. The pollution load index (PLI) and ecological risk index (H) indicated that study area was heavily contaminated with TRWMPs. There was a significant positive correlation between the abundance of TRWMPs and concentration of Cr (p < 0.01) in dust, and their risk assessment and health risk fluctuations were almost identical. Thus, the study is of great significance for elucidating the synergistic contamination and potential risk of TRWMPs and HMs in expressway tunnels.
RESUMO
Conventionally, resin fractionation (RF) method has been widely used to characterize dissolved organic matter (DOM) found in different source waters based on general and broad DOM fractions grouping. In this study, a new refined method using multistep, microvolume resin fractionation combined with excitation emission matrix fluorescence spectroscopy (MSM-RF-EEMS) was developed for further isolation and characterization of subfractions within the primary DOM fractions separated from using the conventional RF method. Subsequently, its feasibility in indicating the occurrence of urban pollution in source waters was also assessed. Results from using the new MSM-RF-EEMS method strongly illustrated that several organic subfractions still exist within the regarded primary pure hydrophobic acid (HoA) fraction including the humic- and fulvic-like organic matters, tryptophan- and tyrosine-like proteins. It was found that by using the MSM-RF-EEMS method, the organic subfractions present within the primary DOM fraction could be easily identified and characterized. Further validation on the HoA fraction using the MSM-RF-EEMS method revealed that the constant association of EEM peak T1 (tryptophan) fraction could specifically be used to indicate the occurrence of urban pollution in source water. The correlation analysis on the presence of EEM peak T2 (tyrosine) fraction could be used as a supplementary proof to further verify the presence of urban pollution in source waters. These findings on using the presence of EEM peaks T1 and T2 within the primary HoA fraction would be significant and useful for developing a sensory device for online water quality monitoring.
Assuntos
Monitoramento Ambiental/métodos , Substâncias Húmicas/análise , Espectrometria de Fluorescência/métodos , Poluentes Químicos da Água/análise , Fracionamento Químico , Interações Hidrofóbicas e Hidrofílicas , Resinas Sintéticas/química , Poluição Química da Água/estatística & dados numéricosRESUMO
Little information is available on the long-term changes of groundwater levels and their associated influencing factors. Zhangjiakou City was chosen as a case to reveal the temporal and spatial dynamics of groundwater level and its driving factors in the long term. Herein, the observation data of groundwater level from 56 wells was investigated from 1981 to 2015, including the collected meteorological data, socio-economic data, and groundwater resource exploitation situation. Results showed that the groundwater level in Zhangjiakou City tended to be decreased, and the decrease rate was gradually accelerated. In the past 35 years, the groundwater level of Bashang Plateau has decreased by 3.59 m < 3.6 m in Yuyang Basin < 7.17 m in Zhuohuai Basin < 20.41 m in Chaixuan Basin. The dynamic changes of groundwater level in four geomorphic units in Zhangjiakou City were significant correlation between the total population and other socio-economic factors, including primary industry production value; common cultivated land area; effective irrigation area; total grain yield; total vegetable yield; total production of pork, beef, and mutton; secondary industry production value; tertiary industry production value; and year-end total population. Furthermore, the principal component analysis of groundwater level variation in Zhangjiakou city showed that the variance contribution rates of the first principal component in the characteristic indicators of the Bashang Plateau, Chaixuan Basin, Zhuohuai Basin, and Yuyang Basin were 75.7%, 83.9%, 66.1%, and 77.8%, respectively, which mainly reflect the information of socio-economic factors. This indicated that socio-economic factors were the main driving factor influencing the continuous decline of groundwater levels in Zhangjiakou City. The obtained findings can provide new insights into the sustainable development of social economy and the rational utilization and allocation of regional water resources.
Assuntos
Água Subterrânea , Recursos Hídricos , Cidades , Desenvolvimento Sustentável , China , Monitoramento Ambiental/métodosRESUMO
Tire wear particles (TWPs), as one of pristine microplastics and non-exhaust emission pollutants, have received extensive attention from scholars worldwide in recent years. In the context of the increasing number of related research results, this study evaluated the current status of TWPs research based on bibliometric analysis and meta-analysis and then discussed in-depth the environmental implications involving transport, transformation of released additives in potential and combined pollution with other microplastics in TWPs researches. Results showed that the regional layout of TWPs research was mainly concentrated in Europe and North America, but with specific countries of the United States, Germany, China, the United Kingdom, and Sweden. Thus, Asia and Africa should timely carry out related research on TWPs considering their large vehicle ownerships. In addition, keyword co-occurrence analysis based on CiteSpace showed that biotoxicity, environmental distribution and human health risks are the current research hotspots. Furthermore, the content of TWPs varied greatly by country and environmental media according to the meta-analysis. It is warranted to be urgently investigated on the distribution, quantitative analysis, migration, additives transformation with toxic effects and control measures of TWPs under the influence of various complex factors such as energy innovation and smart driving. The obtained findings can help understand the developing status of TWPs and then promoting their related investigations in future.
Assuntos
Poluentes Ambientais , Plásticos , Humanos , Microplásticos , Monitoramento Ambiental/métodos , BibliometriaRESUMO
Little information is available on how nano-Fe2O3 substituted iron ions as a possible iron source impacting on algal growth and arsenate (As(V)) metabolism under dissolved organic phosphorus (DOP) (D-glucose-6-phosphate (GP)) conditions. We investigated the growth of Microcystis aeruginosa and As(V) metabolism together with their metabolites in As(V) aquatic environments with nano-Fe2O3 and GP as the sole iron and P sources, respectively. Results showed that nano-Fe2O3 showed inhibitory effects on M. aeruginosa growth and microcystin (MCs) release under GP conditions in As(V) polluted water. There was little influence on As species changes in GP media under different nano-Fe2O3 concentrations except for obvious total As (TAs) removal in 100.0 mg L-1 nano-Fe2O3 levels. As(V) metabolism dominated with As(V) biotransformation in algal cells was facilitated and arsenite (As(III)) releasing risk was relieved clearly by nano-Fe2O3 under GP conditions. The dissolved organic matter (DOM) in media exhibited more fatty acid analogs containing -CO, -CH2 =CH2, and -CH functional groups with increasing nano-Fe2O3 concentrations, but the fluorescent analogs were relatively reduced especially for the fluorescent DOM dominated by aromatic protein-like tryptophan which was significantly inhibited by nano-Fe2O3. Thus, As methylation that was facilitated in M. aeruginosa by nano-Fe2O3 in GP environments also caused more organic substances to release that absorb infrared spectra while reducing the release risks of As(III) and MCs as well as protein-containing tryptophan fractions. From 1H-NMR analysis, this might be caused by the increased metabolites of aromatic compounds, organic acid/amino acid, and carbohydrates/glucose in algal cells. The findings are vital for a better understanding of nano-Fe2O3 role-playing in As bioremediation by microalgae and the subsequent potential aquatic ecological risks.
Assuntos
Arsenitos , Microcystis , Arseniatos/toxicidade , Arseniatos/metabolismo , Microcystis/metabolismo , Matéria Orgânica Dissolvida , Microcistinas/metabolismo , Arsenitos/metabolismo , Triptofano/metabolismo , Fósforo/metabolismoRESUMO
Little information is available on the effects of nano-α-Fe2O3 on arsenic (As) metabolism of algae and potential associated carbon (C) storage in As-contaminated water with dissolved organic phosphorus (DOP) as a phosphorus (P) source. In this study, Microcystis aeruginosa (M. aeruginosa) was used to investigate impacts of nano-α-Fe2O3 on cell growth and As metabolism of algae under a phytate (PA) environment as well as potential associated C storage. Results showed that nano-α-Fe2O3 had a subtle influence on algal cell growth in a PA environment. Herein, algal cell density (OD680) and chlorophyll a (Chla) were inhibited at elevated nano-α-Fe2O3 levels, which simultaneously limited the decrease of Yield. As suggested, the complexation of PA with nano-α-Fe2O3 could alleviate the negative influence on algal cell growth. Furthermore, the elevated nano-α-Fe2O3 increased As methylation in the PA environment due to higher monomethylarsenic (MMA) and dimethylarsenic (DMA) concentrations in the test media. Additionally, microcystins (MCs) in the media changed consistently with UV254, both of which were relatively lower at 10.0 mg·L-1 nano-α-Fe2O3. Enhanced As(V) methylation of algal cells was found to simultaneously reduce the release risk of As(III) and MC while increasing dissolved organic carbon (DOC) content in media, suggesting unfavorable C storage. Three-dimensional fluorescence analysis revealed that the main DOC constituent was the tryptophan-like component in aromatic proteins. Correlation analysis showed that decreases in pH and the zeta potential and an increase in Chla may lead to metabolic As improvements in M. aeruginosa. The obtained findings highlight the need for greater focus on the potential risks of DOP combined with nano-α-Fe2O3 on algal blooms as well as the biogeochemical cycling processes of As and C storage in As-contaminated water with DOP as the P source.
Assuntos
Arsênio , Microcystis , Arsênio/metabolismo , Clorofila A/metabolismo , Matéria Orgânica Dissolvida , Ácido Fítico/metabolismo , Microcistinas/metabolismo , Água/metabolismoRESUMO
Little information is available on the effect of clay minerals and biochar composite on the remediation and bioavailability of thallium in agricultural soils. This study thus investigated the influence of montmorillonite biochar composite (Mnt-BC) amendment on the remediation of agricultural soil contaminated artificially by Tl and its potential health risks. Herein, bok choi was cultured to estimate the efficiency of soil Mnt-BC amendments through the bioavailability of Tl of the vegetable. Results showed that Tl bioavailability was significantly reduced in Mnt-BC-amended soils, mainly ascribed to the elevated soil pH and other improved soil properties of high functional groups (-OH, -COOH), negative charges, and exchangeable cations after amendment. Specifically, the highest immobilization efficiency of Tl in soils was observed in 2.5% treated soils with 79.11%, while in plant leaves the highest reduction of Tl was estimated to be 75.1% compared to the control treatment. Hence, the amendment dosage improved the immobilization of Tl in soil and subsequently reduced Tl uptake by the vegetable. Furthermore, from target hazard quotient (THQ) estimation, Mnt-BC amendment can lower the potential health risk while consuming such cultured bok choi in Tl-contaminated soils. Considering the environmental friendliness and high efficiency of Mnt-BC, it could be used as a potential soil amendment to remediate agricultural soils contaminated by Tl.
Assuntos
Poluentes do Solo , Tálio , Bentonita , Disponibilidade Biológica , Carvão Vegetal/química , Solo/química , Poluentes do Solo/químicaRESUMO
Little information is available on different contribution of TMPs from tire wear particles (TWPs), recycled tire crumbs (RTCs) and tire repair-polished Debris (TRDs) in the environment at national scale and their potential tendency. In this study, the TWPs were predicted using machine learning method of CNN (Convolutional Neural Networks) algorithms under different potential socioeconomic and climate scenarios based on the estimation of TMPs in China. Results showed that TWPs emission exhibited the most important part of TMPs, followed by RTCs and TRDs in China. The three mentioned tire microplastics largely distributed in Chinese coastal provinces. After machine learning applied in CNN using the dataset of estimated emission of TWPs from 2008 to 2018, the express delivery volume and education funding at the current increased rate would not have significant impacts on TWPs emissions; Additionally, TWPs emissions were also sensitive to changes of economic and transportation development; Low temperature conditions would further promote TWPs emissions. Accordingly, the rational development of logistics and green economy, the equilibrium improvement of education quality, and the increase of public traffic with new energy would be helpful to mitigate TWPs emissions. The obtained findings can enhance the understanding TMPs emission at particular scale and their corresponding precise management.
Assuntos
Microplásticos , Plásticos , China , Monitoramento Ambiental , Aprendizado de Máquina , Fatores SocioeconômicosRESUMO
Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, Rox(V)), an extensively used organoarsenical feed additive, enters soils through the application of Rox(V)-containing manure and further degrades to highly toxic arsenicals. Microplastics, as emerging contaminants, are also frequently detected in soils. However, the effects of microplastics on soil Rox(V) degradation are unknown. A microcosm experiment was conducted to investigate soil Rox(V) degradation responses to polyethylene (PE) microplastics and the underlying mechanisms. PE microplastics inhibited soil Rox(V) degradation, with the main products being 3-amino-4-hydroxyphenylarsonic acid [3-AHPAA(V)], N-acetyl-4-hydroxy-m-arsanilic acid [N-AHPAA(V)], arsenate [As(V)], and arsenite [As(III)]. This inhibition was likely driven by the decline in soil pH by PE microplastic addition, which may directly enhance Rox(V) sorption in soils. The decreased soil pH further suppressed the nfnB gene related to nitroreduction of Rox(V) to 3-AHPAA(V) and nhoA gene associated with acetylation of 3-AHPAA(V) to N-AHPAA(V), accompanied by a decrease in the relative abundance of possible Rox(V)-degrading bacteria (e.g., Pseudomonadales), although the diversity, composition, network complexity, and assembly of soil bacterial communities were largely influenced by Rox(V) rather than PE microplastics. Our study emphasizes microplastic-induced inhibition of Rox(V) degradation in soils and the need to consider the role of microplastics in better risk assessment and remediation of Rox(V)-contaminated soils.
Assuntos
Roxarsona , Roxarsona/química , Microplásticos , Plásticos , Solo/química , PolietilenoRESUMO
Potential effects of antibiotics on agricultural soil microflora have recently become increasing concerns with antibiotic-contaminated biosolid now being used in agricultural land. However, changes of soil microbial community function caused by the antibiotic-associated disturbance are less addressed. This paper investigated the changes in microbial functional diversity by spiking sulfamethoxazole (SMX) and chlortetracycline (CTC) in a loam paddy soil and then incubating for 21 days. The dose-effect and time-dependent changes of antibiotic-associated disturbance on soil microbial community were analyzed with the soils sampled at 7 and 21 days using Biolog EcoPlate. At day 7 following treatment, SMX decreased functional diversity of soil microbial community, and the treatment of 100 mg SMX kg⻹ dry soil had a significant inhibition of average well color development (AWCD) and Shannon index as compared to the control (p < 0.05). The SMX changed to improve soil microbial community function at day 21. CTC had less effect on soil microbial community function during the whole incubation period. Antibiotic dissipation and adsorption in soil, which may decrease their microbial bioavailability, led to the temporary change of antibiotic effect on functional diversity of soil microbial community. Principal component analysis clearly revealed the difference of antibiotic dose-effects on the soil microbial community function. The findings demonstrated that soil microbial community showed more sensitivity to SMX than CTC, and soil microbial community function could recover or improve due to antibiotic dissipation in soil.
Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Biodiversidade , Clortetraciclina/farmacologia , Microbiologia do Solo , Sulfametoxazol/farmacologia , Antibacterianos/metabolismo , Bactérias/isolamento & purificação , Clortetraciclina/metabolismo , Ecossistema , Solo/química , Sulfametoxazol/metabolismoRESUMO
Mining effluents are the main source of metals in the surrounding aquatic environment. The mining district of Purple Mountain has a history of copper mining for more than 30 years, but there is limited investigation of metal bioaccumulation in the aquatic creatures from the Tingjiang river catchment affected by the mining activities. In this study, we collected grass carps (Ctenopharyngodon idellus) from four sites, and analyzed the accumulation of chromium (Cr), nickel (Ni), manganese (Mn), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) in ten tissues (scale, skin, muscle, gill, liver, kidney, fish maw, heart, stomach, and intestine) of the fish samples. Among all tissue samples, the highest concentrations (micrograms per gram wet weight) of Ni (0.263), Cu (69.2), Zn (84.0), As (0.259), Cd (0.640), Hg (0.051), and Pb (0.534) were noted in the liver, gill, and kidney tissues, whereas the highest concentrations of Cr (0.356) and Mn (62.7) were detected in the skin and intestine, respectively. These results gave a better understanding of the variability of metals distribution in different fish tissues. In comparison with the sample sites, metals (especially Mn, Cu, Zn, Ni, and Pb) in liver, gill, kidney, stomach, and intestine showed more inter-site differences than other tissues. The inter-site differences also revealed that site 1 and 2 increased fish uptake of Cu, Zn, Ni, and Pb, which may indicate that the copper mine and urban effluents contributed to high levels of these metals in aquatic environments in site 1 and 2. A potential food safety issue may emerge depending on the mining activities in this region because some metals in a few tissue samples exceeded the guideline values for human consumption of fish.
Assuntos
Carpas/metabolismo , Água Doce/química , Metais/metabolismo , Mineração , Poluentes Químicos da Água/metabolismo , Animais , Arsênio/análise , Arsênio/metabolismo , Cádmio/análise , Cádmio/metabolismo , China , Cromo/análise , Cromo/metabolismo , Cobre/análise , Cobre/metabolismo , Monitoramento Ambiental , Brânquias/metabolismo , Manganês/análise , Manganês/metabolismo , Mercúrio/análise , Mercúrio/metabolismo , Metais/análise , Níquel/análise , Níquel/metabolismo , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Zinco/análise , Zinco/metabolismoRESUMO
Iron oxide nanoparticles (nano-Fe2O3) widely distribute in waters with low toxicity to aquatic organisms. But it is unclear for nano-Fe2O3 to affect the fate of coexisting arsenic (As) with its bioaccumulation and biotransformation. In this study, we thus mainly investigated arsenate (As(V)) toxicity, uptake kinetics, biotransformation and subcellular distribution in Microcystis aeruginosa influenced by nano-Fe2O3. The results showed that M. aeruginosa was more sensitive to As(V) associated with nano-Fe2O3. Due to the exaggerated increase of efflux rate constants of As compared with the uptake rate constants in algal cells affected by different levels of nano-Fe2O3, the As(V) bioconcentration factor decreased with nano-Fe2O3 increasing correspondingly, indicating that As bioaccumulation was diminished by nano-Fe2O3. The decreased As accumulation in M. aeruginosa could be supported by the evidential As(V) sequestration through high adsorption of nano-Fe2O3, which resulted in decreasing free As level for algae uptake in media. Meanwhile, As subcellular distribution was adjusted by nano-Fe2O3 with decreasing in cell walls and rising in cytoplasmic organelles compared with nano-Fe2O3 free. As(V) reduction and methylation were enhanced with increasing nano-Fe2O3, stimulating by its sensitivity to the interaction of nano-Fe2O3 and As(V) as well as the rising level of As in cytoplasmic organelles of this algae. It is confirmed by the higher relative gene expression levels of arsC and arsM in elevated nano-Fe2O3. Accordingly, it is highlighted to be deserved more attention that the changing behavior of As(V) by nano-Fe2O3 that reduce As bioaccumulation and accelerate its biotransformation in algae in As contaminated water.
Assuntos
Arsênio , Microcystis , Arseniatos/metabolismo , Arsênio/metabolismo , Bioacumulação , Biotransformação , Microcystis/metabolismoRESUMO
The abundance and morphological characteristics of microplastics in the surface sediments of mangrove wetlands in the Jiulong River estuary were analyzed. The main sources of microplastics were also explored in detail. The results showed that the abundance of microplastics ranged from 640 to 1140 n·kg-1 (dry sediment), with an average of 935 n·kg-1, exhibiting a medium level compared with other domestic and abroad mangrove areas. The microscopic observation found that the microplastics were granular (39%), fragmented (31%), and fibrous (30%); the color was mainly transparent (55%); and the particle size was less than 1 mm (92%). As observed via Raman spectroscopy, the main polymer types of the microplastics were identified to be polyethylene, polyethylene terephthalate, and polypropylene, accounting for 57%, 34%, and 9%, respectively. The main sources of microplastics were the plastic waste from aquaculture nearby, urban and rural domestic or industrial wastewater in the basin, and the plastic waste transported here by the tide. Additionally, SEM-EDS results showed that the surface of the microplastics had the characteristics of depression, porosity, and tearing, and some heavy metal elements such as Pb, Cd, Hg, Cr, Fe, Mn, Zn, and Cu were attached to the microplastics. Microplastics may be transferred to the sediments as carriers of heavy metals, posing a potential threat to wetland ecological security.
Assuntos
Metais Pesados , Poluentes Químicos da Água , China , Monitoramento Ambiental , Estuários , Sedimentos Geológicos , Metais Pesados/análise , Microplásticos , Plásticos , Medição de Risco , Rios , Poluentes Químicos da Água/análiseRESUMO
The concentrations of six sulfonamides (SAs) and three tetracyclines (TCs) were investigated in Jiulongjiang River during the low water season and the high water season. They were monitored in both surface water and sediment. Total concentrations of all these antibiotics varied from 31 to 25,771 ng g(-1) in sediment samples. In water they ranged from 60 to 2607 ng L(-1) during the low water season and from ND (not detected) to 134 ng L(-1) during the high water season. At the sites nearby breeding farms, chlorotetracycline was found to have the highest concentration of 1036 ng L(-1) in water and 14,666 ng g(-1) in sediments. According to the published data, the concentrations of sulfamethazine, sulfameter and TCs at these sites were higher than that in most rivers. The concentrations during the low water season were tens to hundreds of times higher than that in the high water season. The lower concentrations of TCs in the high water season might result from both dilution and photo-degradation, while dilution and bio-degradation might lead to the lower concentrations of SAs. However, further study is needed to clarify the specific reasons. Concerning the relationship between sediment and water samples, the pseudo-partitioning values of TCs were much higher than SAs. It indicates that the TCs are prone to accumulate in the sediment.
Assuntos
Antibacterianos/análise , Rios/química , Poluentes Químicos da Água/análise , China , Monitoramento Ambiental , Sedimentos Geológicos/química , Estações do Ano , Sulfonamidas/análise , Tetraciclinas/análise , Poluição Química da Água/estatística & dados numéricosRESUMO
Titanium nanomaterials are likely to sink into sediments in substantial quantities due to their wide use in a number of applications for decades. To assess the potential environmental consequences, a better understanding is required of the occurrence and sources of titanium (Ti) nanomaterials in sediments. In this research, we provide the first report of the Ti concentrations and the morphology and composition of Ti-based solids in surface sediments from Xiamen Bay, China. Results indicated that the anthropogenic Ti concentrations in the surface sediments from Xiamen Bay reached approximately 2.74 g kg(-1). Ti nanomaterials could be found in sediments with elevated Ti concentrations, which were often aggregated to a few hundred nanometers (<300 nm) and were composed of several spherical particles, less than 50 nm in size, that were made solely of TiO(x). However, Ti particles (approx. 300-700 nm) could be also found in sediments with lower Ti concentrations, which were presumably components of the natural clay mineral kaolinite. Ti nanomaterials could be easily distributed in sediments associated with elevated levels of organic matter and preferentially attach to those sediments with elevated fine fractions. As a sentinel, or tracer, for other nanomaterials, the field-scale investigation of Ti nanomaterials would contribute to increasing our knowledge on the behavior of engineered nanomaterials in an aquatic environment.