Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35891131

RESUMO

In this work, a two-dimensional (2D) position-detection device using a single axis magnetic sensor combined with orthogonal gradient coils was designed and fabricated. The sensors used were an induction coil and a GMR spin-valve sensor GF807 from Sensitec Inc. The field profiles generated by the two orthogonal gradient coils were analyzed numerically to achieve the maximum linear range, which corresponded to the detection area of the tracking system. The two coils were driven by 1-kHz sine wave currents with a 90° phase difference to generate the fields with uniform gradients along the x- and y-axis in the plane of the tracking stage. The gradient fields were detected by a single-axis sensor incorporated with a digital dual-phase lock-in detector to retrieve the position information. A linearity correction algorithm was used to improve the location accuracy and to extend the linear range for position sensing. The mean positioning error was found to be 0.417 mm, corresponding to the relative error of 0.21% in the working range of 200 mm × 200 mm, indicating that the proposed tracking system is promising for applications requiring accurate control of the two-dimensional position.

2.
Rev Sci Instrum ; 88(2): 025004, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28249502

RESUMO

In this work, an ASIC (application specific integrated circuits) transducer circuit for field modulated giant magnetoresistance (GMR) sensors was designed and fabricated using a 0.18-µm CMOS process. The transducer circuits consist of a frequency divider, a digital phase shifter, an instrument amplifier, and an analog mixer. These comprise a mix of analog and digital circuit techniques. The compact chip size of 1.5 mm × 1.5 mm for both analog and digital parts was achieved using the TSMC18 1P6M (1-polysilicon 6-metal) process design kit, and the characteristics of the system were simulated using an HSpice simulator. The output of the transducer circuit is the result of the first harmonic detection, which resolves the modulated field using a phase sensitive detection (PSD) technique and is proportional to the measured magnetic field. When the dual-bridge GMR sensor is driven by the transducer circuit with a current of 10 mA at 10 kHz, the observed sensitivity of the field sensor is 10.2 mV/V/Oe and the nonlinearity error was 3% in the linear range of ±1 Oe. The performance of the system was also verified by rotating the sensor system horizontally in earth's magnetic field and recording the sinusoidal output with respect to the azimuth angle, which exhibits an error of less than ±0.04 Oe. These results prove that the ASIC transducer is suitable for driving the AC field modulated GMR sensors applied to geomagnetic measurement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA