Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 50(3): 1245-1257, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35713387

RESUMO

Activating invasion and metastasis are one of the primary hallmarks of cancer, the latter representing the leading cause of death in cancer patients. Whilst many advances in this area have been made in recent years, the process of cancer dissemination and the underlying mechanisms governing invasion are still poorly understood. Cancer cells exhibit multiple invasion strategies, including switching between modes of invasion and plasticity in response to therapies, surgical interventions and environmental stimuli. The ability of cancer cells to switch migratory modes and their inherent plasticity highlights the critical challenge preventing the successful design of cancer and anti-metastatic therapies. This mini-review presents current knowledge on the critical models of tumour invasion and dissemination. We also discuss the current issues surrounding current treatments and arising therapeutic opportunities. We propose that the establishment of novel approaches to study the key biological mechanisms underlying the metastatic cascade is critical in finding novel targets that could ultimately lead to complete inhibition of cancer cell invasion and dissemination.


Assuntos
Invasividade Neoplásica , Humanos , Invasividade Neoplásica/patologia , Metástase Neoplásica
2.
NPJ Precis Oncol ; 8(1): 64, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472332

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype characterised by extensive intratumoral heterogeneity, high rates of metastasis and chemoresistance, leading to poor clinical outcomes. Despite progress, the mechanistic basis of chemotherapy resistance in TNBC patients remains poorly understood. Here, leveraging single-cell transcriptome datasets of matched longitudinal TNBC chemoresponsive and chemoresistant patient cohorts, we unravel distinct cell subpopulations intricately associated with chemoresistance and the signature genes defining these populations. Notably, using genome-wide mapping of the H3K27ac mark, we show that the expression of these chemoresistance genes is driven via a set of TNBC super-enhancers and associated transcription factor networks across TNBC subtypes. Furthermore, genetic screens reveal that a subset of these transcription factors is essential for the survival of TNBC cells, and their loss increases sensitivity to chemotherapeutic agents. Overall, our study has revealed epigenetic and transcription factor networks underlying chemoresistance and suggests novel avenues to stratify and improve the treatment of patients with a high risk of developing resistance.

3.
Sci Adv ; 10(23): eadn1640, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838158

RESUMO

Folding of the cerebral cortex is a key aspect of mammalian brain development and evolution, and defects are linked to severe neurological disorders. Primary folding occurs in highly stereotyped patterns that are predefined in the cortical germinal zones by a transcriptomic protomap. The gene regulatory landscape governing the emergence of this folding protomap remains unknown. We characterized the spatiotemporal dynamics of gene expression and active epigenetic landscape (H3K27ac) across prospective folds and fissures in ferret. Our results show that the transcriptomic protomap begins to emerge at early embryonic stages, and it involves cell-fate signaling pathways. The H3K27ac landscape reveals developmental cell-fate restriction and engages known developmental regulators, including the transcription factor Cux2. Manipulating Cux2 expression in cortical progenitors changed their proliferation and the folding pattern in ferret, caused by selective transcriptional changes as revealed by single-cell RNA sequencing analyses. Our findings highlight the key relevance of epigenetic mechanisms in defining the patterns of cerebral cortex folding.


Assuntos
Córtex Cerebral , Epigênese Genética , Furões , Regulação da Expressão Gênica no Desenvolvimento , Animais , Córtex Cerebral/metabolismo , Córtex Cerebral/embriologia , Furões/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Histonas/metabolismo , Histonas/genética , Redes Reguladoras de Genes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA