Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 152(12): 124101, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32241125

RESUMO

DFTB+ is a versatile community developed open source software package offering fast and efficient methods for carrying out atomistic quantum mechanical simulations. By implementing various methods approximating density functional theory (DFT), such as the density functional based tight binding (DFTB) and the extended tight binding method, it enables simulations of large systems and long timescales with reasonable accuracy while being considerably faster for typical simulations than the respective ab initio methods. Based on the DFTB framework, it additionally offers approximated versions of various DFT extensions including hybrid functionals, time dependent formalism for treating excited systems, electron transport using non-equilibrium Green's functions, and many more. DFTB+ can be used as a user-friendly standalone application in addition to being embedded into other software packages as a library or acting as a calculation-server accessed by socket communication. We give an overview of the recently developed capabilities of the DFTB+ code, demonstrating with a few use case examples, discuss the strengths and weaknesses of the various features, and also discuss on-going developments and possible future perspectives.

3.
J Chem Phys ; 143(18): 184107, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26567646

RESUMO

Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron, and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply the method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time, the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data.

4.
Phys Rev Lett ; 108(23): 236601, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-23003980

RESUMO

We investigate generic Hamiltonians for confined electrons with weak inhomogeneous spin-orbit coupling. Using a local gauge transformation we show how the SU(2) Hamiltonian structure reduces to a U(1)×U(1) structure for spinless fermions in a fictitious orbital magnetic field, to leading order in the spin-orbit strength. Using an Onsager relation, we further show how the resulting spin conductance vanishes in a two-terminal setup, and how it is turned on by either weakly breaking time-reversal symmetry or opening additional transport terminals, thus allowing one to switch the generated spin current on or off. We numerically check our theory for mesoscopic cavities as well as Aharonov-Bohm rings.

5.
J Chem Theory Comput ; 9(11): 4901-14, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26583409

RESUMO

The time-dependent density functional based tight-binding (TD-DFTB) approach is generalized to account for fractional occupations. In addition, an on-site correction leads to marked qualitative and quantitative improvements over the original method. Especially, the known failure of TD-DFTB for the description of σ → π* and n → π* excitations is overcome. Benchmark calculations on a large set of organic molecules also indicate a better description of triplet states. The accuracy of the revised TD-DFTB method is found to be similar to first principles TD-DFT calculations at a highly reduced computational cost. As a side issue, we also discuss the generalization of the TD-DFTB method to spin-polarized systems. In contrast to an earlier study, we obtain a formalism that is fully consistent with the use of local exchange-correlation functionals in the ground state DFTB method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA