Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem J ; 440(3): 327-4, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21848513

RESUMO

Skeletal muscle responds to exercise by activation of signalling pathways that co-ordinate gene expression to sustain muscle performance. MEF2 (myocyte enhancer factor 2)-dependent transcriptional activation of MHC (myosin heavy chain) genes promotes the transformation from fast-twitch into slow-twitch fibres, with MEF2 activity being tightly regulated by interaction with class IIa HDACs (histone deacetylases). PKD (protein kinase D) is known to directly phosphorylate skeletal muscle class IIa HDACs, mediating their nuclear export and thus derepression of MEF2. In the present study, we report the generation of transgenic mice with inducible conditional expression of a dominant-negative PKD1kd (kinase-dead PKD1) protein in skeletal muscle to assess the role of PKD in muscle function. In control mice, long-term voluntary running experiments resulted in a switch from type IIb+IId/x to type IIa plantaris muscle fibres as measured by indirect immunofluorescence of MHCs isoforms. In mice expressing PKD1kd, this fibre type switch was significantly impaired. These mice exhibited altered muscle fibre composition and decreased running performance compared with control mice. Our findings thus indicate that PKD activity is essential for exercise-induced MEF2-dependent skeletal muscle remodelling in vivo.


Assuntos
Músculo Esquelético/fisiologia , Canais de Cátion TRPP/metabolismo , Actinas/metabolismo , Substituição de Aminoácidos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Ensaios Enzimáticos , Indução Enzimática , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Fatores de Transcrição MEF2 , Camundongos , Camundongos Transgênicos , Atividade Motora , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Fatores de Regulação Miogênica/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Corrida , Canais de Cátion TRPP/genética
2.
J Cell Biol ; 156(1): 65-74, 2002 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-11777941

RESUMO

We here describe the structural requirements for Golgi localization and a sequential, localization-dependent activation process of protein kinase C (PKC) mu involving auto- and transphosphorylation. The structural basis for Golgi compartment localization was analyzed by confocal microscopy of HeLa cells expressing various PKC mu-green fluorescent protein fusion proteins costained with the Golgi compartment-specific markers p24 and p230. Deletions of either the NH(2)-terminal hydrophobic or the cysteine region, but not of the pleckstrin homology or the acidic domain, of PKC mu completely abrogated Golgi localization of PKC mu. As an NH(2)-terminal PKC mu fragment was colocalized with p24, this region of PKC mu is essential and sufficient to mediate association with Golgi membranes. Fluorescence recovery after photobleaching studies confirmed the constitutive, rapid recruitment of cytosolic PKC mu to, and stable association with, the Golgi compartment independent of activation loop phosphorylation. Kinase activity is not required for Golgi complex targeting, as evident from microscopical and cell fractionation studies with kinase-dead PKC mu found to be exclusively located at intracellular membranes. We propose a sequential activation process of PKC mu, in which Golgi compartment recruitment precedes and is essential for activation loop phosphorylation (serines 738/742) by a transacting kinase, followed by auto- and transphosphorylation of NH(2)-terminal serine(s) in the regulatory domain. PKC mu activation loop phosphorylation is indispensable for substrate phosphorylation and thus PKC mu function at the Golgi compartment.


Assuntos
Complexo de Golgi/metabolismo , Proteína Quinase C/química , Proteína Quinase C/metabolismo , Western Blotting , Linhagem Celular , Ativação Enzimática , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Modelos Biológicos , Mutação , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Proteína Quinase C/genética , Estrutura Terciária de Proteína
3.
BMC Dev Biol ; 8: 47, 2008 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-18439271

RESUMO

BACKGROUND: The PKD family of serine/threonine kinases comprises a single member in Drosophila (dPKD), two isoforms in C. elegans (DKF-1 and 2) and three members, PKD1, PKD2 and PKD3 in mammals. PKD1 and PKD2 have been the focus of most studies up to date, which implicate these enzymes in very diverse cellular functions, including Golgi organization and plasma membrane directed transport, immune responses, apoptosis and cell proliferation. Concerning PKD3, a role in the formation of vesicular transport carriers at the trans-Golgi network (TGN) and in basal glucose transport has been inferred from in vitro studies. So far, however, the physiological functions of the kinase during development remain unknown. RESULTS: We have examined the expression pattern of PKD3 during the development of mouse embryos by immunohistochemistry. Using a PKD3 specific antibody we demonstrate that the kinase is differentially expressed during organogenesis. In the developing heart a strong PKD3 expression is constantly detected from E10 to E16.5. From E12.5 on PKD3 is increasingly expressed in neuronal as well as in the supporting connective tissue and in skeletal muscles. CONCLUSION: The data presented support an important role for PKD3 during development of these tissues.


Assuntos
Embrião de Mamíferos/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteína Quinase C/genética , Animais , Western Blotting , Tecido Conjuntivo/embriologia , Tecido Conjuntivo/enzimologia , Embrião de Mamíferos/metabolismo , Feminino , Coração Fetal/embriologia , Coração Fetal/enzimologia , Regulação Enzimológica da Expressão Gênica/genética , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/embriologia , Músculo Esquelético/enzimologia , Tecido Nervoso/embriologia , Tecido Nervoso/enzimologia , Organogênese , Gravidez
4.
Mol Biol Cell ; 20(7): 2108-20, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19211839

RESUMO

Protein kinase D (PKD) is known to participate in various cellular functions, including secretory vesicle fission from the Golgi and plasma membrane-directed transport. Here, we report on expression and function of PKD in hippocampal neurons. Expression of an enhanced green fluorescent protein (EGFP)-tagged PKD activity reporter in mouse embryonal hippocampal neurons revealed high endogenous PKD activity at the Golgi complex and in the dendrites, whereas PKD activity was excluded from the axon in parallel with axonal maturation. Expression of fluorescently tagged wild-type PKD1 and constitutively active PKD1(S738/742E) (caPKD1) in neurons revealed that both proteins were slightly enriched at the trans-Golgi network (TGN) and did not interfere with its thread-like morphology. By contrast, expression of dominant-negative kinase inactive PKD1(K612W) (kdPKD1) led to the disruption of the neuronal Golgi complex, with kdPKD1 strongly localized to the TGN fragments. Similar findings were obtained from transgenic mice with inducible, neuron-specific expression of kdPKD1-EGFP. As a prominent consequence of kdPKD1 expression, the dendritic tree of transfected neurons was reduced, whereas caPKD1 increased dendritic arborization. Our results thus provide direct evidence that PKD activity is selectively involved in the maintenance of dendritic arborization and Golgi structure of hippocampal neurons.


Assuntos
Dendritos/enzimologia , Complexo de Golgi/enzimologia , Hipocampo/citologia , Neurônios/enzimologia , Proteína Quinase C/metabolismo , Animais , Compartimento Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Doxiciclina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Genes Dominantes , Genes Reporter , Complexo de Golgi/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Rede trans-Golgi/efeitos dos fármacos , Rede trans-Golgi/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA