Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Tissue Bank ; 25(1): 43-53, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37138137

RESUMO

More than 1000 donated aortic and pulmonary valves from predominantly European tissue banks were centrally decellularized and delivered to hospitals in Europe and Japan. Here, we report on the processing and quality controls before, during and after the decellularization of these allografts. Our experiences show that all tissue establishments, which provide native cardiovascular allografts for decellularization, meet comparably high-quality standards, regardless of their national origin. A total of 84% of all received allografts could be released as cell-free allografts. By far the most frequent reasons for rejection were non-release of the donor by the tissue establishment or severe contaminations of the native tissue donation. Only in 2% of all cases the specification for freedom from cells was not fulfilled, indicating that decellularization of human heart valves is a safe process with a very low discard ratio. In clinical use, cell-free cardiovascular allografts have been shown to be advantageous over conventional heart valve replacements, at least in young adults. These results open the discussion on the future gold standard and funding of this innovative therapeutic option for heart valve replacement.


Assuntos
Valvas Cardíacas , Valva Pulmonar , Adulto Jovem , Humanos , Transplante Homólogo , Doadores de Tecidos , Controle de Qualidade
2.
Basic Res Cardiol ; 109(6): 441, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25231595

RESUMO

Generating cellularized 3D constructs with clinical relevant dimensions is challenged by nutrition supply. This is of utmost importance for cardiac tissue engineering, since cardiomyocytes are extremely sensitive to malnutrition and hypoxia in vitro and after implantation. To develop a perfusable myocardial patch, we have focused on seeding a decellularized biological vascularized matrix (BioVaM) with endothelial cells. BioVaM is produced by decellularization of porcine small intestinal segments with preserved arterial and venous pedicles, which can be connected to a perfusion system in vitro or the host vasculature in vivo. The BioVaM vessel bed was re-seeded with porcine primary endothelial cells (pCEC). Seeding efficiency was influenced by detergent composition used for decellularization (sodium dodecyl sulfate (SDS) and/or Triton X-100) and the medium composition used for re-seeding. After decellularization, residual SDS was detected in the matrix affecting the survival of pCEC which showed a low tolerance to SDS and Triton X-100. Sensitivity to detergents was attenuated by supplementation of the medium with bovine serum albumin (BSA) or fetal calf serum (FCS). Pre-conditioning of the BioVaM with 20% FCS was not sufficient to attain pCEC survival in the vascular bed. However, re-cellularization was achieved by prolonged FCS supplementation during cultivation, resulting in a perfusable, re-endothelialized matrix of 11 cm2 in size. This achievement represents a promising step towards engineering of perfusable, 3D cardiac constructs with clinically relevant dimensions.


Assuntos
Células Endoteliais , Matriz Extracelular , Coração , Organoides/irrigação sanguínea , Engenharia Tecidual/métodos , Humanos
3.
Beilstein J Nanotechnol ; 7: 1330-1337, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826507

RESUMO

Nanotechnology is a rapidly growing and promising field of interest in medicine; however, nanoparticle-cell interactions are not yet fully understood. The goal of this work was to examine the interaction between endothelial cells and gallium nitride (GaN) semiconductor nanoparticles. Cellular viability, adhesion, proliferation, and uptake of nanoparticles by endothelial cells were investigated. The effect of free GaN nanoparticles versus the effect of growing endothelial cells on GaN functionalized surfaces was examined. To functionalize surfaces with GaN, GaN nanoparticles were synthesized on a sacrificial layer of zinc oxide (ZnO) nanoparticles using hydride vapor phase epitaxy. The uptake of GaN nanoparticles by porcine endothelial cells was strongly dependent upon whether they were fixed to the substrate surface or free floating in the medium. The endothelial cells grown on surfaces functionalized with GaN nanoparticles demonstrated excellent adhesion and proliferation, suggesting good biocompatibility of the nanostructured GaN.

4.
Acta Biomater ; 30: 177-187, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26546973

RESUMO

The ultimate goal of tissue engineering is the generation of implants similar to native tissue. Thus, it is essential to utilize physiological stimuli to improve the quality of engineered constructs. Numerous publications reported that mechanical stimulation of small-sized, non-perfusable, tissue engineered cardiac constructs leads to a maturation of immature cardiomyocytes like neonatal rat cardiomyocytes or induced pluripotent stem cells/embryonic stem cells derived self-contracting cells. The aim of this study was to investigate the impact of mechanical stimulation and perfusion on the maturation process of large-scale (2.5×4.5cm), implantable cardiac patches based on decellularized porcine small intestinal submucosa (SIS) or Biological Vascularized Matrix (BioVaM) and a 3-dimensional construct containing neonatal rat heart cells. Application of cyclic mechanical stretch improved contractile function, cardiomyocyte alignment along the stretch axis and gene expression of cardiomyocyte markers. The development of a complex network formed by endothelial cells within the cardiac construct was enhanced by cyclic stretch. Finally, the utilization of BioVaM enabled the perfusion of the matrix during stimulation, augmenting the beneficial influence of cyclic stretch. Thus, this study demonstrates the maturation of cardiac constructs with clinically relevant dimensions by the application of cyclic mechanical stretch and perfusion of the starter matrix. STATEMENT OF SIGNIFICANCE: Considering the poor endogenous regeneration of the heart, engineering of bioartificial cardiac tissue for the replacement of infarcted myocardium is an exciting strategy. Most techniques for the generation of cardiac tissue result in relative small-sized constructs insufficient for clinical applications. Another issue is to achieve cardiomyocytes and tissue maturation in culture. Here we report, for the first time, the effect of mechanical stimulation and simultaneous perfusion on the maturation of cardiac constructs of clinical relevant dimensions, which are based on a perfusable starter matrix derived from porcine small intestine. In response to these stimuli superior organization of cardiomyocytes and vascular networks was observed in contrast to untreated controls. The study provides substantial progress towards the generation of implantable cardiac patches.


Assuntos
Matriz Extracelular/química , Implantes Experimentais , Miocárdio , Miócitos Cardíacos , Estresse Mecânico , Animais , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley
5.
Tissue Eng Part A ; 20(3-4): 799-809, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24102409

RESUMO

The in vitro generation of a bioartificial cardiac construct (CC) represents a promising tool for the repair of ischemic heart tissue. Several approaches to engineer cardiac tissue in vitro have been conducted. The main drawback of these studies is the insufficient size of the resulting construct for clinical applications. The focus of this study was the generation of an artificial three-dimensional (3D), contractile, and suturable myocardial patch by combining a gel-based CC with decellularized porcine small intestinal submucosa (SIS), thereby engineering an artificial tissue of 11 cm² in size. The alignment and morphology of rat neonatal cardiomyocytes (rCMs) in SIS-CC complexes were investigated as well as the re-organization of primary endothelial cells which were co-isolated in the rCM preparation. The ability of a rat heart endothelial cell line (RHE-A) to re-cellularize pre-existing vessel structures within the SIS or a biological vascularized matrix (BioVaM) was determined. SIS-CC contracted spontaneously, uniformly, and rhythmically with an average rate of 200 beats/min in contrast to undirected contractions observed in CC without SIS support. rCM exhibited an elongated morphology with well-defined sarcomeric structures oriented along the longitudinal axis in the SIS-CC, whereas round-shaped and random-arranged rCM were observed in CC. Electric coupling of rCM was demonstrated by microelectrode array measurements. A dense network of CD31⁺/eNOS⁺ cells was detected as permeating the whole construct. Superficial supplementation of RHE-A cells to SIS-CC led to the migration of these cells through the CC, resulting in the re-population of pre-existing vessel structures within the decelluarized SIS. By infusion of RHE-A cells into the BioVaM venous and arterial pedicles, a re-population of the BioVaM vessel bed as well as distribution of RHE-A cells throughout the CC was achieved. Rat endothelial cells within the CC were in contact with RHE-A cells. Ingrowth and formation of a network by endothelial cells infused through the BioVaM represent a promising step toward engineering a functional perfusion system, enabling the engineering of vascularized and well-nourished 3D CC of dimensions relevant for therapeutic heart repair.


Assuntos
Órgãos Bioartificiais , Géis/farmacologia , Coração/efeitos dos fármacos , Mucosa Intestinal/transplante , Intestino Delgado/transplante , Alicerces Teciduais/química , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Forma Celular , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Mucosa Intestinal/irrigação sanguínea , Mucosa Intestinal/efeitos dos fármacos , Intestino Delgado/irrigação sanguínea , Intestino Delgado/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta/metabolismo , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA