Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298538

RESUMO

New therapeutic options for liver cirrhosis are needed. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have emerged as a promising tool for delivering therapeutic factors in regenerative medicine. Our aim is to establish a new therapeutic tool that employs EVs derived from MSCs to deliver therapeutic factors for liver fibrosis. EVs were isolated from supernatants of adipose tissue MSCs, induced-pluripotent-stem-cell-derived MSCs, and umbilical cord perivascular cells (HUCPVC-EVs) by ion exchange chromatography (IEC). To produce engineered EVs, HUCPVCs were transduced with adenoviruses that code for insulin-like growth factor 1 (AdhIGF-I-HUCPVC-EVs) or green fluorescent protein. EVs were characterized by electron microscopy, flow cytometry, ELISA, and proteomic analysis. We evaluated EVs' antifibrotic effect in thioacetamide-induced liver fibrosis in mice and on hepatic stellate cells in vitro. We found that IEC-isolated HUCPVC-EVs have an analogous phenotype and antifibrotic activity to those isolated by ultracentrifugation. EVs derived from the three MSCs sources showed a similar phenotype and antifibrotic potential. EVs derived from AdhIGF-I-HUCPVC carried IGF-1 and showed a higher therapeutic effect in vitro and in vivo. Remarkably, proteomic analysis revealed that HUCPVC-EVs carry key proteins involved in their antifibrotic process. This scalable MSC-derived EV manufacturing strategy is a promising therapeutic tool for liver fibrosis.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Camundongos , Animais , Proteômica , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/terapia , Cirrose Hepática/metabolismo , Células Estreladas do Fígado/metabolismo , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo
2.
Biochem Biophys Res Commun ; 473(1): 194-199, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27012206

RESUMO

Addition of methyl groups to arginine residues is catalyzed by a group of enzymes called Protein Arginine Methyltransferases (Prmt). Although Prmt1 is essential in development, its paralogue Prmt8 has been poorly studied. This gene was reported to be expressed in nervous system and involved in neurogenesis. In this work, we found that Prmt8 is expressed in mouse embryonic stem cells (ESC) and in induced pluripotent stem cells, and modulated along differentiation to neural precursor cells. We found that Prmt8 promoter activity is induced by the pluripotency transcription factors Oct4, Sox2 and Nanog. Moreover, endogenous Prmt8 mRNA levels were reduced in ESC transfected with Sox2 shRNA vector. As a whole, our results indicate that Prmt8 is expressed in pluripotent stem cells and its transcription is modulated by pluripotency transcription factors. These findings suggest that besides its known function in nervous system, Prmt8 could play a role in pluripotent stem cells.


Assuntos
Regulação Enzimológica da Expressão Gênica , Células-Tronco Pluripotentes/citologia , Proteína-Arginina N-Metiltransferases/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Diferenciação Celular , Regulação para Baixo , Fibroblastos/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos , Células NIH 3T3 , Proteína Homeobox Nanog , Neurônios/citologia , Fator 3 de Transcrição de Octâmero/metabolismo , Regiões Promotoras Genéticas , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
3.
Trends Biotechnol ; 41(11): 1343-1359, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37302911

RESUMO

Exosome-based strategies constitute a promising tool for therapeutics, avoiding potential immunogenic and tumorigenic side-effects of cell therapies. However, the collection of a suitable exosome pool, and the need for high doses with conventional administration approaches, hamper their clinical translation. To overcome these challenges, versatile exosome collection strategies together with advanced delivery platforms may represent major progress in this field. Microfluidics enables large-scale gathering of both natural and synthetic exosomes for their implementation into bioinks, while 3D-bioprinting holds great promise in regenerative medicine with the use of exosome-loaded scaffolds that mimic the target tissue with controlled pharmacokinetics and pharmacodynamics. Hence, the combination of both strategies might become the key for the translation of exosome therapies to clinical practice.

4.
Shock ; 59(6): 941-947, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37036956

RESUMO

ABSTRACT: Background : Mesenchymal stem cells (MSCs) can be activated by different bacterial toxins. Lipopolysaccharides and Shiga Toxin (Stx) are the main toxins necessary for hemolytic uremic syndrome development. The main etiological event in this disease is endothelial damage that causes glomerular destruction. Considering the repairing properties of MSC, we aimed to study the response of MSC derived from induced pluripotent stem cells (iPSC-MSC) to LPS and/or Stx and its effect on the restoration of injured endothelial cells. Methods : iPSC-MSC were treated with LPS and or/Stx for 24 h and secretion of cytokines, adhesion, and migration were measured in response to these toxins. In addition, conditioned media from treated iPSC-MSC were collected and used for proteomics analysis and evaluation of endothelial cell healing and tubulogenesis using human microvascular endothelial cells 1 as a source of endothelial cells. Results : The results obtained showed that LPS induced a proinflammatory profile on iPSC-MSC, whereas Stx effects were less evident, even though cells expressed the Gb 3 receptor. Moreover, LPS induced on iPSC-MSC an increment in migration and adhesion to a gelatin substrate. Addition of conditioned media of iPSC-MSC treated with LPS + Stx, decreased the capacity of human microvascular endothelial cells 1 to close a wound, and did not favor tubulogenesis. Proteomic analysis of iPSC-MSC treated with LPS and/or Stx revealed specific protein secretion patterns that support the functional results described. Conclusions : iPSC-MSC activated by LPS acquired a proinflammatory profile that induces migration and adhesion to extracellular matrix proteins but the addition of Stx did not activate any repair program to ameliorate endothelial damage, indicating that the use of iPSC-MSC to regenerate endothelial injury caused by LPS and/or Stx in hemolytic uremic syndrome could not be the best option to consider to regenerate a tissue injury.


Assuntos
Síndrome Hemolítico-Urêmica , Células-Tronco Pluripotentes Induzidas , Humanos , Toxina Shiga , Lipopolissacarídeos/farmacologia , Células Endoteliais/metabolismo , Meios de Cultivo Condicionados , Proteômica
5.
R Soc Open Sci ; 9(1): 211510, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35242349

RESUMO

Microfluidic tools have recently made possible many advances in biological and biomedical research. Research in fields such as physics, engineering, chemistry and biology have combined to produce innovation in microfluidics which has positively impacted diverse areas such as nucleotide sequencing, functional genomics, single-cell studies, single molecules assays and biomedical diagnostics. Among these areas, regenerative medicine and stem cells have benefited from microfluidics since these tools have had a profound impact on their applications. In this study, we present a high-performance droplet-based system for transfecting individual human-induced pluripotent stem cells. We will demonstrate that this system has great efficiency in single cells and captured droplets, like other microfluidic methods but with lower cost. Moreover, this microfluidic approach can be associated with the PiggyBac transposase-based system to increase its transfection efficiency. Our results provide a starting point for subsequent applications in more complex transfection systems, single-cell differentiation interactions, cell subpopulations and cell therapy, among other potential applications.

6.
Biochem Biophys Res Commun ; 410(4): 816-22, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21703227

RESUMO

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are a promising source of cells for regenerative medicine because of their potential of self renew and differentiation. Multiple evidences highlight the relationship of chromatin remodeling with stem cell properties, differentiation programs and reprogramming for iPSC obtention. With the purpose of finding chromatin modifying factors relevant to these processes, and based on ChIP on chip studies, we selected several genes that could be modulated by Oct4, Sox2 and Nanog, critical transcription factors in stem cells, and studied their expression profile along the differentiation in mouse and human ESCs, and in mouse iPSCs. In this work, we analyzed the expression of Gcn5l2, GTF3C3, TAF15, ATF7IP, Myst2, HDAC2, HDAC3, HDAC5, HDAC10, SUV39H2, Jarid2, and Bmi-1. We found some genes from different functional groups that were highly modulated, suggesting that they could be relevant both in the undifferentiated state and during differentiation. These findings could contribute to the comprehension of molecular mechanisms involved in pluripotency, early differentiation and reprogramming. We believe that a deeper knowledge of the epigenetic regulation of ESC will allow improving somatic cell reprogramming for iPSC obtention and differentiation protocols optimization.


Assuntos
Cromatina/genética , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Humanos , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Biochem Biophys Res Commun ; 410(2): 252-7, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21651896

RESUMO

Induced pluripotent stem cells (iPSCs) are a promising type of stem cells, comparable to embryonic stem cells (ESCs) in terms of self-renew and pluripotency, generated by reprogramming somatic cells. These cells are an attractive approach to supply patient-specific pluripotent cells, for producing in vitro models of disease, drug discovery, toxicology and potentially treating degenerative disease circumventing immune rejection. In spite of the great advance since iPSCs' establishment, their obtention and propagation is an increasing area of great interest. In a recent work, we have shown that the conditioned medium from a bovine granulosa cell line (BGC-CM) is able to preserve the basic properties of mESCs. Therefore, based on our previous results and the reported resemblance between iPSCs and ESCs, we hypothesized that BGC-CM could provide a favorable context to culturing iPSCs. In this work, we have reprogrammed mouse embryonic fibroblasts obtaining iPSC lines, and showed that they can be propagated in BGC-CM while maintaining self-renewal and pluripotency, evidenced by expression of specific gene markers and capability of in vitro and in vivo differentiation to cell types from the three germ layers. We believe that these findings may provide a novel context to propagate iPSCs to study the molecular mechanisms involved in self-renewal and pluripotency.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Regeneração , Animais , Bovinos , Técnicas de Cultura de Células , Linhagem Celular , Meios de Cultivo Condicionados/metabolismo , Feminino , Células da Granulosa/metabolismo , Células da Granulosa/fisiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Fator 3 de Transcrição de Octâmero/metabolismo
8.
Cell Transplant ; 30: 963689721993774, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33975446

RESUMO

In normal physiological conditions, restoration of a functional epidermal barrier is highly efficient; nevertheless, when it fails, one of the main consequences is a chronic ulcerative skin defect, one of the most frequently recognized complications of diabetes. Most of these chronic venous ulcers do not heal with conventional treatment, leading to the appearance of infections and complications in the patient. Treatments based on the use of autologous mesenchymal stem cells (MSC) have been successful; however, its implementation entails complications. The umbilical cord offers an unlimited source of adult MSC (ucMSC) from the Wharton's jelly tissue with the same relevant features for clinical applicability and avoiding difficulties. It has recently been characterized by one specific subpopulation derived from ucMSC, the differentiated mesenchymal cells (DMCs). This subpopulation expresses the human leukocyte antigen-G (HLA-G) molecule, a strong immunosuppressive checkpoint, and vascular endothelial growth factor (VEGF), the most potent angiogenic factor. Considering the importance of developing a more effective therapy for wound treatment, especially ulcerative skin lesions, we analyzed DMC safety, efficacy, and therapeutic potential. By immunohistochemistry, umbilical cords HLA-G and VEGF positive were selected. Flow cytometry revealed that 90% of the DMC subpopulation are HLA-G+, CD44+, CD73+, CD29+, CD105+, CD90+, and HLA-DR-. Reverse transcription-polymerase chain reaction revealed the expression of HLA-G in all of DMC subpopulations. Upon co-culture with the DMC, peripheral blood mononuclear cell proliferation was inhibited by 50%. In a xenograft transplantation assay, DMC improved wound healing with no signs of rejection of the transplanted cells in immunocompetent mice. This study confirms that HLA-G allows allogeneic cell transplantation, and VEGF is fundamental for the restoration of the failure in blood supply. DMC population has positive effects on wound healing by promoting local angiogenesis in skin lesions. DMC could play a very important role in regenerative medicine and could be a novel allogeneic cell-therapeutic tool for wound healing.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Transplante Homólogo/métodos , Cordão Umbilical/metabolismo , Cicatrização/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos
9.
PLoS One ; 16(6): e0253666, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34166446

RESUMO

Cell death experiments are routinely done in many labs around the world, these experiments are the backbone of many assays for drug development. Cell death detection is usually performed in many ways, and requires time and reagents. However, cell death is preceded by slight morphological changes in cell shape and texture. In this paper, we trained a neural network to classify cells undergoing cell death. We found that the network was able to highly predict cell death after one hour of exposure to camptothecin. Moreover, this prediction largely outperforms human ability. Finally, we provide a simple python tool that can broadly be used to detect cell death.


Assuntos
Aprendizado Profundo , Interpretação de Imagem Assistida por Computador , Linguagens de Programação , Morte Celular , Humanos , Células MCF-7 , Microscopia
10.
PLoS One ; 15(5): e0232715, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32369512

RESUMO

PIWI-interacting RNAs (piRNAs) are a class of non-coding RNAs initially thought to be restricted exclusively to germline cells. In recent years, accumulating evidence has demonstrated that piRNAs are actually expressed in pluripotent, neural, cardiac and even cancer cells. However, controversy remains around the existence and function of somatic piRNAs. Using small RNA-seq samples from H9 pluripotent cells differentiated to mesoderm progenitors and cardiomyocytes we identified the expression of 447 piRNA transcripts, of which 241 were detected in pluripotency, 218 in mesoderm and 171 in cardiac cells. The majority of them originated from the sense strand of protein coding and lncRNAs genes in all stages of differentiation, though no evidences of amplification loop (ping-pong) were found. Genes hosting piRNA transcripts in cardiac samples were related to critical biological processes in the heart, like contraction and cardiac muscle development. Our results indicate that these piRNAs might have a role in fine-tuning the expression of genes involved in differentiation of pluripotent cells to cardiomyocytes.


Assuntos
Células-Tronco Embrionárias Humanas/citologia , Miócitos Cardíacos/citologia , RNA Interferente Pequeno/genética , Adulto , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo
11.
Stem Cell Reports ; 12(4): 845-859, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30880077

RESUMO

Deep learning is a significant step forward for developing autonomous tasks. One of its branches, computer vision, allows image recognition with high accuracy thanks to the use of convolutional neural networks (CNNs). Our goal was to train a CNN with transmitted light microscopy images to distinguish pluripotent stem cells from early differentiating cells. We induced differentiation of mouse embryonic stem cells to epiblast-like cells and took images at several time points from the initial stimulus. We found that the networks can be trained to recognize undifferentiated cells from differentiating cells with an accuracy higher than 99%. Successful prediction started just 20 min after the onset of differentiation. Furthermore, CNNs displayed great performance in several similar pluripotent stem cell (PSC) settings, including mesoderm differentiation in human induced PSCs. Accurate cellular morphology recognition in a simple microscopic set up may have a significant impact on how cell assays are performed in the near future.


Assuntos
Diferenciação Celular , Aprendizado Profundo , Redes Neurais de Computação , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Células Cultivadas , Humanos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Microscopia
12.
Sci Rep ; 9(1): 18077, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792288

RESUMO

The stem cell niche has a strong influence in the differentiation potential of human pluripotent stem cells with integrins playing a major role in communicating cells with the extracellular environment. However, it is not well understood how interactions between integrins and the extracellular matrix are involved in cardiac stem cell differentiation. To evaluate this, we performed a profile of integrins expression in two stages of cardiac differentiation: mesodermal progenitors and cardiomyocytes. We found an active regulation of the expression of different integrins during cardiac differentiation. In particular, integrin α5 subunit showed an increased expression in mesodermal progenitors, and a significant downregulation in cardiomyocytes. To analyze the effect of α5 subunit, we modified its expression by using a CRISPRi technique. After its downregulation, a significant impairment in the process of epithelial-to-mesenchymal transition was seen. Early mesoderm development was significantly affected due to a downregulation of key genes such as T Brachyury and TBX6. Furthermore, we observed that repression of integrin α5 during early stages led to a reduction in cardiomyocyte differentiation and impaired contractility. In summary, our results showed the link between changes in cell identity with the regulation of integrin α5 expression through the alteration of early stages of mesoderm commitment.


Assuntos
Células-Tronco Embrionárias Humanas/citologia , Integrina alfa5/genética , Miócitos Cardíacos/citologia , Sistemas CRISPR-Cas , Diferenciação Celular , Linhagem Celular , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Nicho de Células-Tronco
13.
Exp Mol Med ; 50(9): 1-12, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201949

RESUMO

Mesenchymal stem/stromal cells (MSCs) obtained from pluripotent stem cells (PSCs) constitute an interesting alternative to classical MSCs in regenerative medicine. Among their many mechanisms of action, MSC extracellular vesicles (EVs) are a potential suitable substitute for MSCs in future cell-free-based therapeutic approaches. Unlike cells, EVs do not elicit acute immune rejection, and they can be produced in large quantities and stored until ready to use. Although the therapeutic potential of MSC EVs has already been proven, a thorough characterization of MSC EVs is lacking. In this work, we used a label-free liquid chromatography tandem mass spectrometry proteomic approach to identify the most abundant proteins in EVs that are secreted from MSCs derived from PSCs (PD-MSCs) and from their parental induced PSCs (iPSCs). Next, we compared both datasets and found that while iPSC EVs enclose proteins that modulate RNA and microRNA stability and protein sorting, PD-MSC EVs are rich in proteins that organize extracellular matrix, regulate locomotion, and influence cell-substrate adhesion. Moreover, compared to their respective cells, iPSCs and iPSC EVs share a greater proportion of proteins, while the PD-MSC proteome appears to be more specific. Correlation and principal component analysis consistently aggregate iPSCs and iPSC EVs but segregate PD-MSC and their EVs. Altogether, these findings suggest that during differentiation, compared with their parental iPSC EVs, PD-MSC EVs acquire a more specific set of proteins; arguably, this difference might confer their therapeutic properties.


Assuntos
Diferenciação Celular , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteômica , Linhagem Celular , Vesículas Extracelulares/ultraestrutura , Humanos , Análise de Componente Principal , Células Estromais/metabolismo , Espectrometria de Massas em Tandem , Geleia de Wharton/citologia
14.
Sci Rep ; 8(1): 8072, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29795287

RESUMO

MicroRNAs are small non-coding RNAs involved in post-transcriptional regulation of gene expression related to many cellular functions. We performed a small-RNAseq analysis of cardiac differentiation from pluripotent stem cells. Our analyses identified some new aspects about microRNA expression in this differentiation process. First, we described a dynamic expression profile of microRNAs where some of them are clustered according to their expression level. Second, we described the extensive network of isomiRs and ADAR modifications. Third, we identified the microRNAs families and clusters involved in the establishment of cardiac lineage and define the mirRNAome based on these groups. Finally, we were able to determine a more accurate miRNAome associated with cardiomyocytes by comparing the expressed microRNAs with other mature cells. MicroRNAs exert their effect in a complex and interconnected way, making necessary a global analysis to better understand their role. Our data expands the knowledge of microRNAs and their implications in cardiomyogenesis.


Assuntos
Biomarcadores/metabolismo , Linhagem da Célula/genética , Regulação da Expressão Gênica , Mesoderma/metabolismo , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Células Cultivadas , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mesoderma/citologia , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia
15.
PLoS One ; 13(12): e0207074, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30507934

RESUMO

Cell reprogramming has been well described in mouse and human cells. The expression of specific microRNAs has demonstrated to be essential for pluripotent maintenance and cell differentiation, but not much information is available in domestic species. We aim to generate horse iPSCs, characterize them and evaluate the expression of different microRNAs (miR-302a,b,c,d, miR-205, miR-145, miR-9, miR-96, miR-125b and miR-296). Two equine iPSC lines (L2 and L3) were characterized after the reprogramming of equine fibroblasts with the four human Yamanaka's factors (OCT-4/SOX-2/c-MYC/KLF4). The pluripotency of both lines was assessed by phosphatase alkaline activity, expression of OCT-4, NANOG and REX1 by RT-PCR, and by immunofluorescence of OCT-4, SOX-2 and c-MYC. In vitro differentiation to embryo bodies (EBs) showed the capacity of the iPSCs to differentiate into ectodermal, endodermal and mesodermal phenotypes. MicroRNA analyses resulted in higher expression of the miR-302 family, miR-9 and miR-96 in L2 and L3 vs. fibroblasts (p<0.05), as previously shown in human pluripotent cells. Moreover, downregulation of miR-145 and miR-205 was observed. After differentiation to EBs, higher expression of miR-96 was observed in the EBs respect to the iPSCs, and also the expression of miR-205 was induced but only in the EB-L2. In addition, in silico alignments of the equine microRNAs with mRNA targets suggested the ability of miR-302 family to regulate cell cycle and epithelial mesenchymal transition genes, miR-9 and miR-96 to regulate neural determinant genes and miR-145 to regulate pluripotent genes, similarly as in humans. In conclusion, we could obtain equine iPSCs, characterize them and determine for the first time the expression level of microRNAs in equine pluripotent cells.


Assuntos
Cavalos , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/genética , Animais , Diferenciação Celular/genética , Fibroblastos/citologia , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Técnicas de Transferência Nuclear
16.
Stem Cell Rev Rep ; 13(1): 68-78, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27815690

RESUMO

Mesenchymal stem cells (MSC) have been extensively studied over the past years for the treatment of different diseases. Most of the ongoing clinical trials currently involve the use of MSC derived from adult tissues. This source may have some limitations, particularly with therapies that may require extensive and repetitive cell dosage. However, nowadays, there is a staggering growth in literature on a new source of MSC. There is now increasing evidence about the mesenchymal differentiation from pluripotent stem cell (PSC). Here, we summarize the current knowledge of pluripotent-derived mesenchymal stem cells (PD-MSC). We present a historical perspective on the subject, and then discuss some critical questions that remain unanswered.


Assuntos
Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais/citologia , Células-Tronco Pluripotentes/citologia , Adulto , Animais , Células-Tronco Embrionárias/citologia , Transição Epitelial-Mesenquimal , Humanos , Células-Tronco Pluripotentes Induzidas/citologia
17.
Stem Cell Rev Rep ; 13(4): 491-498, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28214945

RESUMO

Intercellular communication is one of the most important events in cell population behavior. In the last decade, tunneling nanotubes (TNTs) have been recognized as a new form of long distance intercellular connection. TNT function is to allow molecular and subcellular structure exchange between neighboring cells via the transfer of molecules and organelles such as calcium ions, prions, viral and bacterial pathogens, small lysosomes and mitochondria. New findings support the concept that mesenchymal stem cells (MSCs) can affect cell microenvironment by the release of soluble factors or the transfer of cellular components to neighboring cells, in a way which significantly contributes to cell regulation and tissue repair, although the underlying mechanisms remain poorly understood. MSCs have many advantages for their implementation in regenerative medicine. The TNTs in these cell types are heterogeneous in both structure and function, probably due to their highly dynamic behavior. In this work we report an extensive and detailed description of types, structure, components, dynamics and functionality of the TNTs bridging neighboring human umbilical cord MSCs obtained from Wharton"s jelly. Characterization studies were carried out through phase contrast, fluorescence, electron microscopy and time lapse images with the aim of describing cells suitable for an eventual regenerative medicine.


Assuntos
Comunicação Celular , Células-Tronco Mesenquimais/metabolismo , Nanotubos/química , Humanos , Células-Tronco Mesenquimais/citologia
18.
Sci Rep ; 6: 35660, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27762303

RESUMO

Human embryonic and induced pluripotent stem cells are self-renewing pluripotent stem cells (PSC) that can differentiate into a wide range of specialized cells. Basic fibroblast growth factor is essential for PSC survival, stemness and self-renewal. PI3K/AKT pathway regulates cell viability and apoptosis in many cell types. Although it has been demonstrated that PI3K/AKT activation by bFGF is relevant for PSC stemness maintenance its role on PSC survival remains elusive. In this study we explored the molecular mechanisms involved in the regulation of PSC survival by AKT. We found that inhibition of AKT with three non-structurally related inhibitors (GSK690693, AKT inhibitor VIII and AKT inhibitor IV) decreased cell viability and induced apoptosis. We observed a rapid increase in phosphatidylserine translocation and in the extent of DNA fragmentation after inhibitors addition. Moreover, abrogation of AKT activity led to Caspase-9, Caspase-3, and PARP cleavage. Importantly, we demonstrated by pharmacological inhibition and siRNA knockdown that GSK3ß signaling is responsible, at least in part, of the apoptosis triggered by AKT inhibition. Moreover, GSK3ß inhibition decreases basal apoptosis rate and promotes PSC proliferation. In conclusion, we demonstrated that AKT activation prevents apoptosis, partly through inhibition of GSK3ß, and thus results relevant for PSC survival.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Proteína Oncogênica v-akt/metabolismo , Células-Tronco Pluripotentes/fisiologia , Transdução de Sinais , Sobrevivência Celular , Células Cultivadas , Regulação da Expressão Gênica , Humanos
20.
PLoS One ; 11(10): e0164049, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27732616

RESUMO

The demand for equine cloning as a tool to preserve high genetic value is growing worldwide; however, nuclear transfer efficiency is still very low. To address this issue, we first evaluated the effects of time from cell fusion to activation (<1h, n = 1261; 1-2h, n = 1773; 2-3h, n = 1647) on in vitro and in vivo development of equine embryos generated by cloning. Then, we evaluated the effects of using different nuclear donor cell types in two successive experiments: I) induced pluripotent stem cells (iPSCs) vs. adult fibroblasts (AF) fused to ooplasts injected with the pluripotency-inducing genes OCT4, SOX2, MYC and KLF4, vs. AF alone as controls; II) umbilical cord-derived mesenchymal stromal cells (UC-MSCs) vs. fetal fibroblasts derived from an unborn cloned foetus (FF) vs. AF from the original individual. In the first experiment, both blastocyst production and pregnancy rates were higher in the 2-3h group (11.5% and 9.5%, respectively), respect to <1h (5.2% and 2%, respectively) and 1-2h (5.6% and 4.7%, respectively) groups (P<0.05). However, percentages of born foals/pregnancies were similar when intervals of 2-3h (35.2%) or 1-2h (35.7%) were used. In contrast to AF, the iPSCs did not generate any blastocyst-stage embryos. Moreover, injection of oocytes with the pluripotency-inducing genes did not improve blastocyst production nor pregnancy rates respect to AF controls. Finally, higher blastocyst production was obtained using UC-MSC (15.6%) than using FF (8.9%) or AF (9.3%), (P<0.05). Despite pregnancy rates were similar for these 3 groups (17.6%, 18.2% and 22%, respectively), viable foals (two) were obtained only by using FF. In summary, optimum blastocyst production rates can be obtained using a 2-3h interval between cell fusion and activation as well as using UC-MSCs as nuclear donors. Moreover, FF line can improve the efficiency of an inefficient AF line. Overall, 24 healthy foals were obtained from a total of 29 born foals.


Assuntos
Núcleo Celular/fisiologia , Feto/citologia , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Blastocisto/citologia , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Transferência Embrionária , Feminino , Cavalos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Células-Tronco Mesenquimais/citologia , Microinjeções , Técnicas de Transferência Nuclear , Oócitos/citologia , Plasmídeos/genética , Plasmídeos/metabolismo , Gravidez , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cordão Umbilical/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA