Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 656
Filtrar
1.
Nat Immunol ; 23(10): 1484-1494, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36138182

RESUMO

The heterogeneous cellular microenvironment of human airway chronic inflammatory diseases, including chronic rhinosinusitis (CRS) and asthma, is still poorly understood. Here, we performed single-cell RNA sequencing (scRNA-seq) on the nasal mucosa of healthy individuals and patients with three subtypes of CRS and identified disease-specific cell subsets and molecules that specifically contribute to the pathogenesis of CRS subtypes. As such, ALOX15+ macrophages contributed to the type 2 immunity-driven pathogenesis of one subtype of CRS, eosinophilic CRS with nasal polyps (eCRSwNP), by secreting chemokines that recruited eosinophils, monocytes and T helper 2 (TH2) cells. An inhibitor of ALOX15 reduced the release of proinflammatory chemokines in human macrophages and inhibited the overactivation of type 2 immunity in a mouse model of eosinophilic rhinosinusitis. Our findings advance the understanding of the heterogeneous immune microenvironment and the pathogenesis of CRS subtypes and identify potential therapeutic approaches for the treatment of CRS and potentially other type 2 immunity-mediated diseases.


Assuntos
Pólipos Nasais , Rinite , Sinusite , Animais , Doença Crônica , Eosinófilos , Humanos , Camundongos , Mucosa Nasal
2.
Mol Cancer ; 23(1): 47, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459511

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) orchestrate a supportive niche that fuels cancer metastatic development in non-small cell lung cancer (NSCLC). Due to the heterogeneity and plasticity of CAFs, manipulating the activated phenotype of fibroblasts is a promising strategy for cancer therapy. However, the underlying mechanisms of fibroblast activation and phenotype switching that drive metastasis remain elusive. METHODS: The clinical implications of fibroblast activation protein (FAP)-positive CAFs (FAP+CAFs) were evaluated based on tumor specimens from NSCLC patients and bioinformatic analysis of online databases. CAF-specific circular RNAs (circRNAs) were screened by circRNA microarrays of primary human CAFs and matched normal fibroblasts (NFs). Survival analyses were performed to assess the prognostic value of circNOX4 in NSCLC clinical samples. The biological effects of circNOX4 were investigated by gain- and loss-of-function experiments in vitro and in vivo. Fluorescence in situ hybridization, luciferase reporter assays, RNA immunoprecipitation, and miRNA rescue experiments were conducted to elucidate the underlying mechanisms of fibroblast activation. Cytokine antibody array, transwell coculture system, and enzyme-linked immunosorbent assay (ELISA) were performed to investigate the downstream effectors that promote cancer metastasis. RESULTS: FAP+CAFs were significantly enriched in metastatic cancer samples, and their higher abundance was correlated with the worse overall survival in NSCLC patients. A novel CAF-specific circRNA, circNOX4 (hsa_circ_0023988), evoked the phenotypic transition from NFs into CAFs and promoted the migration and invasion of NSCLC in vitro and in vivo. Clinically, circNOX4 correlated with the poor prognosis of advanced NSCLC patients. Mechanistically, circNOX4 upregulated FAP by sponging miR-329-5p, which led to fibroblast activation. Furthermore, the circNOX4/miR-329-5p/FAP axis activated an inflammatory fibroblast niche by preferentially inducing interleukin-6 (IL-6) and eventually promoting NSCLC progression. Disruption of the intercellular circNOX4/IL-6 axis significantly suppressed tumor growth and metastatic colonization in vivo. CONCLUSIONS: Our study reveals a role of the circRNA-induced fibroblast niche in tumor metastasis and highlights that targeting the circNOX4/FAP/IL-6 axis is a promising strategy for the intervention of NSCLC metastasis.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Interleucina-6/genética , Interleucina-6/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/patologia , Fibroblastos , MicroRNAs/genética , MicroRNAs/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
3.
Am J Transplant ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452932

RESUMO

Mycophenolate mofetil (MMF) is one of the most used immunosuppressive drugs in organ transplantation, but frequent gastrointestinal (GI) side effects through unknown mechanisms limit its clinical use. Gut microbiota and its metabolites were recently reported to play a vital role in MMF-induced GI toxicity, but the specific mechanism of how they interact with the human body is still unclear. Here, we found that secondary bile acids (BAs), as bacterial metabolites, were significantly reduced by MMF administration in the gut of mice. Microbiome data and fecal microbiota transfer model supported a microbiota-dependent effect on the reduction of secondary BAs. Supplementation of the secondary BA lithocholic acid alleviated MMF-induced weight loss, colonic inflammation, and oxidative phosphorylation damage. Genetic deletion of the vitamin D3 receptor (VDR), which serves as a primary colonic BA receptor, in colonic epithelial cells (VDRΔIEC) abolished the therapeutic effect of lithocholic acid on MMF-induced GI toxicity. Impressively, we discovered that paricalcitol, a Food and Drug Administration-approved VDR agonist that has been used in clinics for years, could effectively alleviate MMF-induced GI toxicity. Our study reveals a previously unrecognized mechanism of gut microbiota, BAs, and VDR signaling in MMF-induced GI side effects, offering potential therapeutic strategies for clinics.

4.
BMC Plant Biol ; 24(1): 203, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509491

RESUMO

BACKGROUND: Quinoa leaves demonstrate a diverse array of colors, offering a potential enhancement to landscape aesthetics and the development of leisure-oriented sightseeing agriculture in semi-arid regions. This study utilized integrated transcriptomic and metabolomic analyses to investigate the mechanisms underlying anthocyanin synthesis in both emerald green and pink quinoa leaves. RESULTS: Integrated transcriptomic and metabolomic analyses indicated that both flavonoid biosynthesis pathway (ko00941) and anthocyanin biosynthesis pathway (ko00942) were significantly associated with anthocyanin biosynthesis. Differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were analyzed between the two germplasms during different developmental periods. Ten DEGs were verified using qRT-PCR, and the results were consistent with those of the transcriptomic sequencing. The elevated expression of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), 4-coumarate CoA ligase (4CL) and Hydroxycinnamoyltransferase (HCT), as well as the reduced expression of flavanone 3-hydroxylase (F3H) and Flavonol synthase (FLS), likely cause pink leaf formation. In addition, bHLH14, WRKY46, and TGA indirectly affected the activities of CHS and 4CL, collectively regulating the levels of cyanidin 3-O-(3'', 6''-O-dimalonyl) glucoside and naringenin. The diminished expression of PAL, 4CL, and HCT decreased the formation of cyanidin-3-O-(6"-O-malonyl-2"-O-glucuronyl) glucoside, leading to the emergence of emerald green leaves. Moreover, the lowered expression of TGA and WRKY46 indirectly regulated 4CL activity, serving as another important factor in maintaining the emerald green hue in leaves N1, N2, and N3. CONCLUSION: These findings establish a foundation for elucidating the molecular regulatory mechanisms governing anthocyanin biosynthesis in quinoa leaves, and also provide some theoretical basis for the development of leisure and sightseeing agriculture.


Assuntos
Antocianinas , Chenopodium quinoa , Antocianinas/metabolismo , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma , Folhas de Planta/genética , Folhas de Planta/metabolismo , Glucosídeos , Regulação da Expressão Gênica de Plantas
5.
Small ; : e2403057, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805740

RESUMO

Integrating lithium-ion and metal storage mechanisms to improve the capacity of graphite anode holds the potential to boost the energy density of lithium-ion batteries. However, this approach, typically plating lithium metal onto traditional graphite anodes, faces challenges of safety risks of severe lithium dendrite growth and short circuits due to restricted lithium metal accommodation space and unstable lithium plating in commercial carbonate electrolytes. Herein, a slightly expanded spherical graphite anode is developed with a precisely adjustable expanded structure to accommodate metallic lithium, achieving a well-balanced state of high capacity and stable lithium-ion/metal storage in commercial carbonate electrolytes. This structure also enables fast kinetics of both Li intercalation/de-intercalation and plating/stripping. With a total anode capacity of 1.5 times higher (558 mAh g-1) than graphite, the full cell coupled with a high-loading LiNi0.8Co0.1Mn0.1O2 cathode (13 mg cm-2) under a low N/P ratio (≈1.15) achieves long-term cycling stability (75% of capacity after 200 cycles, in contrast to the fast battery failure after 50 cycles with spherical graphite anode). Furthermore, the capacity of the full cell also reaches a low capacity decay rate of 0.05% per cycle at 0.2 C under the low temperature of -20 °C.

6.
Small ; 20(14): e2308226, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37972269

RESUMO

The carbon dioxide reduction reaction (CO2RR) driven by electricity can transform CO2 into high-value multi-carbon (C2+) products. Copper (Cu)-based catalysts are efficient but suffer from low C2+ selectivity at high current densities. Here La(OH)3 in Cu catalyst is introduced to modify its electronic structure towards efficient CO2RR to C2+ products at ampere-level current densities. The La(OH)3/Cu catalyst has a remarkable C2+ Faradaic efficiency (FEC2+) of 71.2% which is 2.2 times that of the pure Cu catalyst at a current density of 1,000 mA cm-2 and keeps stable for 8 h. In situ spectroscopy and density functional theory calculations both show that La(OH)3 modifies the electronic structure of Cu. This modification favors *CO adsorption, subsequent hydrogenation, *CO─*COH coupling, and consequently increases C2+ selectivity. This work provides a guidance on facilitating C2+ product formation, and suppressing hydrogen evolution by La(OH)3 modification, enabling efficient CO2RR at ampere-level current densities.

7.
Small ; 20(10): e2306713, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37919863

RESUMO

Luminescent metal clusters have attracted great interest in current research; however, the design synthesis of Al clusters with color-tunable luminescence remains challenging. Herein, an [Al8 (OH)8 (NA)16 ] (Al8 , HNA = nicotinic acid) molecular cluster with dual luminescence properties of fluorescence and room-temperature phosphorescence (RTP) is synthesized by choosing HNA ligand as phosphor. Its prompt photoluminescence (PL) spectrum exhibits approximately white light emission at room temperature. Considering that halogen atoms can be used to regulate the RTP property by balancing the singlet and triplet excitons, different CdX2 (X- = Cl- , Br- , I- ) are introduced into the reactive system of the Al8 cluster, and three new Al8 cluster-based metal-organic frameworks, {[Al8 Cd3 Cl5 (OH)8 (NA)17 H2 O]·2HNA}n (CdCl2 -Al8 ), {[Al8 Cd4 Br7 (OH)8 (NA)16 CH3 CN]·NA·HNA}n (CdBr2 -Al8 ) and {[Al8 Cd8 I16 (OH)8 (NA)16 ]}n (CdI2 -Al8 ) are successfully obtained. They realize the color tunability from blue to yellow at room temperature. The origination of fluorescence and phosphorescence has also been illustrated by structure-property analysis and theoretical calculation. This work provides new insights into the design of multicolor luminescent metal cluster-based materials and develops advanced photo-functional materials for multicolor display, anti-counterfeiting, and encryption applications.

8.
Small ; : e2401045, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38948959

RESUMO

A cerebral ischemia-reperfusion injury is ensued by an intricate interplay between various pathological processes including excitotoxicity, oxidative stress, inflammation, and apoptosis. For a long time, drug intervention policies targeting a single signaling pathway have failed to achieve the anticipated clinical efficacy in the intricate and dynamic inflammatory environment of the brain. Moreover, inadequate targeted drug delivery remains a significant challenge in cerebral ischemia-reperfusion injury therapy. In this study, a multifunctional nanoplatform (designated as PB-006@MSC) is developed using ZL006-loaded Prussian blue nanoparticles (PBNPs) camouflaged by a mesenchymal stem cell (MSC) membrane (MSCm). ZL006 is a neuroprotectant. It can be loaded efficiently into the free radical scavenger PBNP through mesoporous adsorption. This can simultaneously modulate multiple targets and pathways. MSCm biomimetics can reduce the nanoparticle immunogenicity, efficiently enhance their homing capability to the cerebral ischemic penumbra, and realize active-targeting therapy for ischemic stroke. In animal experiments, PB-006@MSC integrated reactive oxygen species (ROS) scavenging and neuroprotection. Thereby, it selectively targeted the cerebral ischemic penumbra (about fourfold higher accumulation at 24 h than in the non-targeted group), demonstrated a remarkable therapeutic efficacy in reducing the volume of cerebral infarction (from 37.1% to 2.3%), protected the neurogenic functions, and ameliorated the mortality.

9.
Plant Biotechnol J ; 22(6): 1669-1680, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38450899

RESUMO

The exploitation of heterosis to integrate parental advantages is one of the fastest and most efficient ways of rice breeding. The genomic architecture of heterosis suggests that the grain yield is strongly correlated with the accumulation of numerous rare superior alleles with positive dominance. However, the improvements in yield of hybrid rice have shown a slowdown or even plateaued due to the limited availability of complementary superior alleles. In this study, we achieved a considerable increase in grain yield of restorer lines by inducing an alternative splicing event in a heterosis gene OsMADS1 through CRISPR-Cas9, which accounted for approximately 34.1%-47.5% of yield advantage over their corresponding inbred rice cultivars. To achieve a higher yield in hybrid rice, we crossed the gene-edited restorer parents harbouring OsMADS1GW3p6 with the sterile lines to develop new rice hybrids. In two-line hybrid rice Guang-liang-you 676 (GLY676), the yield of modified hybrids carrying the homozygous heterosis gene OsMADS1GW3p6 significantly exceeded that of the original hybrids with heterozygous OsMADS1. Similarly, the gene-modified F1 hybrids with heterozygous OsMADS1GW3p6 increased grain yield by over 3.4% compared to the three-line hybrid rice Quan-you-si-miao (QYSM) with the homozygous genotype of OsMADS1. Our study highlighted the great potential in increasing the grain yield of hybrid rice by pyramiding a single heterosis gene via CRISPR-Cas9. Furthermore, these results demonstrated that the incomplete dominance of heterosis genes played a major role in yield-related heterosis and provided a promising strategy for breeding higher-yielding rice varieties above what is currently achievable.


Assuntos
Genes Dominantes , Vigor Híbrido , Oryza , Melhoramento Vegetal , Oryza/genética , Oryza/crescimento & desenvolvimento , Vigor Híbrido/genética , Melhoramento Vegetal/métodos , Sistemas CRISPR-Cas , Edição de Genes/métodos , Hibridização Genética , Plantas Geneticamente Modificadas/genética , Genes de Plantas/genética , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Plant Physiol ; 192(3): 2067-2080, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36891812

RESUMO

ETHYLENE-INSENSITIVE 3/ETHYLENE-INSENSITIVE 3-LIKEs (EIN3/EILs) are important ethylene response factors during fruit ripening. Here, we discovered that EIL2 controls carotenoid metabolism and ascorbic acid (AsA) biosynthesis in tomato (Solanum lycopersicum). In contrast to the red fruits presented in the wild type (WT) 45 d after pollination, the fruits of CRISPR/Cas9 eil2 mutants and SlEIL2 RNA interference lines (ERIs) showed yellow or orange fruits. Correlation analysis of transcriptome and metabolome data for the ERI and WT ripe fruits revealed that SlEIL2 is involved in ß-carotene and AsA accumulation. ETHYLENE RESPONSE FACTORs (ERFs) are the typical components downstream of EIN3 in the ethylene response pathway. Through a comprehensive screening of ERF family members, we determined that SlEIL2 directly regulates the expression of 4 SlERFs. Two of these, SlERF.H30 and SlERF.G6, encode proteins that participate in the regulation of LYCOPENE-ß-CYCLASE 2 (SlLCYB2), encoding an enzyme that mediates the conversion of lycopene to carotene in fruits. In addition, SlEIL2 transcriptionally repressed L-GALACTOSE 1-PHOSPHATE PHOSPHATASE 3 (SlGPP3) and MYO-INOSITOL OXYGENASE 1 (SlMIOX1) expression, which resulted in a 1.62-fold increase of AsA via both the L-galactose and myoinositol pathways. Overall, we demonstrated that SlEIL2 functions in controlling ß-carotene and AsA levels, providing a potential strategy for genetic engineering to improve the nutritional value and quality of tomato fruit.


Assuntos
Solanum lycopersicum , beta Caroteno , beta Caroteno/metabolismo , Licopeno/metabolismo , Solanum lycopersicum/genética , Ácido Ascórbico/metabolismo , Galactose/metabolismo , Etilenos/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
BMC Cancer ; 24(1): 184, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326751

RESUMO

BACKGROUND: Sinonasal mucosal melanoma (SNMM) is a relatively rare malignant tumour with a poor prognosis. This study was designed to identify prognostic factors and establish a nomogram model to predict the overall survival (OS) of patients with SNMM. METHODS: A total of 459 patients with SNMM were selected from the Surveillance, Epidemiology, and End Results (SEER) database as the training cohort. Univariate and multivariate Cox regression analyses were used to screen for independent factors associated with patient prognosis and develop the nomogram model. In addition, external validation was performed to evaluate the effectiveness of the nomogram with a cohort of 34 patients with SNMM from Peking Union Medical College Hospital. RESULTS: The median OS in the cohort from the SEER database was 28 months. The 1-year, 3-year and 5-year OS rates were 69.8%, 40.4%, and 30.0%, respectively. Multivariate Cox regression analysis indicated that age, T stage, N stage, surgery and radiotherapy were independent variables associated with OS. The areas under the receiver operating characteristic curves (AUCs) of the nomograms for predicting 1-, 3- and 5-year OS were 0.78, 0.71 and 0.71, respectively, in the training cohort. In the validation cohort, the area under the curve (AUC) of the nomogram for predicting 1-, 3- and 5-year OS were 0.90, 0.75 and 0.78, respectively. Patients were classified into low- and high-risk groups based on the total score of the nomogram. Patients in the low-risk group had a significantly better survival prognosis than patients in the high-risk group in both the training cohort (P < 0.0001) and the validation cohort (P = 0.0016). CONCLUSION: We established and validated a novel nomogram model to predict the OS of SNMM patients stratified by age, T stage, N stage, surgery and radiotherapy. This predictive tool is of potential importance in the realms of patient counselling and clinical decision-making.


Assuntos
Melanoma , Neoplasias dos Seios Paranasais , Humanos , Nomogramas , Melanoma/terapia , Neoplasias dos Seios Paranasais/terapia , Área Sob a Curva , Tomada de Decisão Clínica , Prognóstico , Programa de SEER
12.
Anal Biochem ; 690: 115527, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38565333

RESUMO

The identification of noninvasive volatile biomarkers for lung cancer is a significant clinical challenge. Through in vitro studies, the recognition of altered metabolism in cell volatile organic compound (VOC) emitting profile, along with the occurrence of oncogenesis, provides insight into the biochemical pathways involved in the production and metabolism of lung cancer volatile biomarkers. In this research, for the first time, a comprehensive comparative analysis of the volatile metabolites in NSCLS cells (A549), SCLC cells (H446), lung normal cells (BEAS-2B), as well as metabolites in both the oxidative stress (OS) group and control group. Specifically, the combination of eleven VOCs, including n-dodecane, acetaldehyde, isopropylbenzene, p-ethyltoluene and cis-1,3-dichloropropene, exhibited potential as volatile biomarkers for lung cancer originating from two different histological sources. Furthermore, the screening process in A549 cell lines resulted in the identification of three exclusive biomarkers, isopropylbenzene, formaldehyde and bromoform. Similarly, the exclusive biomarkers 1,2,4-trimethylbenzene, p-ethyltoluene, and cis-1,3-dichloropropene were present in the H446 cell line. Additionally, significant changes in trans-2-pentene, acetaldehyde, 1,2,4-trimethylbenzene, and bromoform were observed, indicating a strong association with OS. These findings highlight the potential of volatile biomarkers profiling as a means of noninvasive identification for lung cancer diagnosis.

13.
Physiol Plant ; 176(2): e14251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38472740

RESUMO

Nitrogen (N) is an essential nutrient for plant growth, and most plants absorb it as nitrate. AtNRG2 has been reported to play an important role in nitrate regulation. In this study, we investigated the functions of AtNRG2 family members of Arabidopsis thaliana and maize in nitrate signalling and metabolism. Our results showed that both AtNRG2.10 and AtNRG2.15 regulated nitrate signalling and metabolism. Overexpression of AtNRG2.11 (AtNRG2) could promote plant growth and improve nitrogen use efficiency (NUE). In addition, the maize genome harbors 23 ZmNRG2 members. We detected the expression of these genes treated with nitrate and the expression of four genes was strongly induced with ZmNRG2.7 having the highest levels. Overexpression of ZmNRG2.7 in the atnrg2 mutant could restore the defects of atnrg2, suggesting that ZmNRG2.7 is involved in nitrate signalling and metabolism. Moreover, the overexpression lines of ZmNRG2.7 showed increased biomass and NUE. These findings demonstrate that at least a part of NRG2 family genes in Arabidopsis and maize regulate nitrate signalling and provide a molecular basis for improving the NUE of crops.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Nitratos/metabolismo , Nitrogênio/metabolismo , Zea mays/metabolismo
14.
BMC Gastroenterol ; 24(1): 129, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589828

RESUMO

BACKGROUND: The HAP, Six-and-Twelve, Up to Seven, and ALBI scores have been substantiated as reliable prognostic markers in patients presenting with intermediate and advanced hepatocellular carcinoma (HCC) undergoing transarterial chemoembolization (TACE) treatment. Given this premise, our research aims to assess the predictive efficacy of these models in patients with intermediate and advanced HCC receiving a combination of TACE and Apatinib. Additionally, we have conducted a meticulous comparative analysis of these four scoring systems to discern their respective predictive capacities and efficacies in combined therapy. METHODS: Performing a retrospective analysis on the clinical data from 200 patients with intermediate and advanced HCC, we studied those who received TACE combined with Apatinib at the First Affiliated Hospital of the University of Science and Technology of China between June 2018 and December 2022. To identify the factors affecting survival, the study performed univariate and multivariate Cox regression analyses, with calculations of four different scores: HAP, Six-and-Twelve, Up to Seven, and ALBI. Lastly, Harrell's C-index was employed to compare the prognostic abilities of these scores. RESULTS: Cox proportional hazards model results revealed that the ALBI score, presence of portal vein tumor thrombus (PVTT, )and tumor size are independent determinants of prognostic survival. The Kaplan-Meier analyses showed significant differences in survival rates among patients classified by the HAP, Six-and-Twelve, Up to Seven, and ALBI scoring methods. Of the evaluated systems, the HAP scoring demonstrated greater prognostic precision, with a Harrell's C-index of 0.742, surpassing the alternative models (P < 0.05). In addition, an analysis of the area under the AU-ROC curve confirms the remarkable superiority of the HAP score in predicting short-term survival outcomes. CONCLUSION: Our study confirms the predictive value of HAP, Six-and-Twelve, Up to Seven, and ALBI scores in intermediate to advanced Hepatocellular Carcinoma (HCC) patients receiving combined Transarterial Chemoembolization (TACE) and Apatinib therapy. Notably, the HAP model excels in predicting outcomes for this specific HCC subgroup.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Piridinas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Quimioembolização Terapêutica/métodos , Estudos Retrospectivos , Prognóstico
15.
J Fluoresc ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780833

RESUMO

Survival and prognosis of patients with acute myocardial infarction (AMI) are highly dependent on rapid and accurate diagnosis of myocardial damage. Troponin T is the primary diagnostic biomarker and is widely used in clinical practice. Amplified luminescent proximity homogeneous assay (AlphaLISA) may provide a solution to rapidly detect a small amount of analyte through molecular interactions between special luminescent donor beads and acceptor bead. Here, a double-antibody sandwich assay was introduced into AlphaLISA for rapid detection for early diagnosis of AMI and disease staging evaluation. The performance of the assay was evaluated. The study found that the cTnT assay has a linear range of 48.66 to 20,000 ng/L with a limit of detection of 48.66 ng/L. In addition, the assay showed no cross-reactivity with other classic biomarkers of myocardial infarction and was highly reproducible with intra- and inter-batch coefficients of variation of less than 10%, notably, only 3 min was taken, which is particularly suitable for clinical diagnosis. These results suggest that our method can be conveniently applied in the clinic to determine the severity of the patient's condition.

16.
Hepatol Res ; 54(4): 358-367, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37924506

RESUMO

AIM: The study aimed to investigate the clinical features, incidence, pathogenesis, and management of liver abscess after drug-eluting bead transarterial chemoembolization (DEB-TACE) for primary and metastatic hepatic malignant tumors. METHODS: From June 2019 to June 2021, patients with liver abscess after DEB-TACE for primary and metastatic hepatic malignant tumors were reviewed and evaluated at our hospital. Demographic and clinical data, radiological findings, management approaches, and prognosis were retrospectively analyzed. RESULTS: In total, 419 DEB-TACE procedures were carried out in 314 patients with primary and metastatic liver tumors at our medical center. Twelve patients were confirmed to have liver abscesses after DEB-TACE through clinical manifestations, laboratory investigations, and imaging. In this study, the incidence of liver abscess was 3.82% per patient and 2.86% per DEB-TACE procedure. After percutaneous drainage and anti-inflammatory treatments, 10 patients recovered, and the remaining 2 patients died due to direct complications of liver abscess, such as sepsis and multiple organ failure. The mortality rate of liver abscesses after DEB-TACE was 16.7% (2/12). CONCLUSION: The incidence of liver abscess after DEB-TACE is relatively high and can have serious consequences, including death. Potential risk factors could include large tumor size, history of bile duct or tumor resection, history of diabetes, small DEB size (100-300 µm). Sensitive antibiotics therapy and percutaneous abscess aspiration/drainage are effective treatments for liver abscess after DEB-TACE.

17.
Cell Mol Life Sci ; 80(7): 191, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369919

RESUMO

Extrachromosomal circular DNAs (eccDNAs) carrying random genomic segments are broadly found across different cancer types, but their molecular functions and impact in gastric cancer (GC) are rarely known. In this study, we aimed to investigate the potential role of eccDNA in GC. Using the Circle-seq strategy, we observed the eccDNA abundance in gastric cancer tissues (GCT) was aberrantly higher than that of normal adjacent tissues (NAT). The high abundance of eccDNAs carrying oncogene-segments in GCT may represent the DNA damage products of amplified oncogenes. Analysis of GCT over-represented eccDNA carrying enhancer (eccEnhancer) based on data from FANTOM5 project combined with TCGA database suggested the GC over-represented eccEnhancers may contribute to development of GC. GC over-represented eccDNAs carrying pre-miRNA (eccMIR) were enriched to multiple cancer-relevant signal pathways by KEGG analysis. We then synthesized the top six GC over-represented eccMIRs and found four of them enabled high expression of miRNAs and down-regulation of miRNA-target genes in MGC803 cells. Furthermore, we observed the inheritance of GC over-represented eccMIRs benefited host cell proliferation and promoted the aggressive features of host cells. Altogether, this study revealed the GC over-represented eccDNAs carrying functional genomic segments were related to the carcinogenesis of GC and presented the capability to facilitate cancer progression, suggesting the cancerous eccDNAs may serve as a dynamic reservoir for genome plasticity and rapid adaptive evolution of cancer. Therefore, blocking the pathways for eccDNAs generation may provide a novel therapeutic strategy for the treatment of gastric cancer.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , DNA Circular/genética , Genoma , DNA , Carcinogênese/genética
18.
Anim Genet ; 55(1): 66-78, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37881102

RESUMO

Our previous studies showed that SYISL is a negative regulator of muscle growth and regeneration in mice, pigs and humans. SYISL knockout resulted in an increase in the density of muscle fibers and muscle growth. However, it is unclear whether there are natural mutations in pig SYNPO2 intron sense-overlapping lncRNA (pSYISL) that affect the expression of pSYISL and muscle growth traits. In this study, three SNPs in exons and six SNPs within the promoter of pSYISL were identified. Association analysis showed that the two SNPs in exons are significantly associated with loin muscle area (p < 0.05); the six SNPs in the promoter that show complete linkage are significantly associated with live backfat thickness and live loin muscle area in American Large White pigs. Bioinformatics and luciferase reporter assays as well as in vitro binding experiments indicated that the mutation of SNP rs702045770 (g.539G>A) leads to the loss of YY1 binding to the promoter, thus affecting the expression level of pSYISL, and we found that Jiangshan Black pigs with genotype GG have a higher expression level of pSYISL than genotype AA individuals, but the muscle fiber density was significantly lower than in genotype AA individuals. Furthermore, the association analysis showed that the carcass backfat thickness of genotype GG of SNP rs702045770 was significantly higher than that of other genotypes in (Pietrain × Duroc) × (Landrace × Yorkshire) crossbred pigs (p < 0.05). The glycolytic potential of genotype GG was significantly higher than that of other genotypes (p < 0.05). These results provide novel insight into the identification of functional SNPs in non-coding genomic regions.


Assuntos
Fibras Musculares Esqueléticas , Polimorfismo de Nucleotídeo Único , Humanos , Suínos , Animais , Camundongos , Fenótipo , Genótipo , Regiões Promotoras Genéticas
19.
Nucleic Acids Res ; 50(18): 10733-10755, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36200826

RESUMO

Long noncoding RNAs (lncRNAs) play important roles in the spatial and temporal regulation of muscle development and regeneration. Nevertheless, the determination of their biological functions and mechanisms underlying muscle regeneration remains challenging. Here, we identified a lncRNA named lncMREF (lncRNA muscle regeneration enhancement factor) as a conserved positive regulator of muscle regeneration among mice, pigs and humans. Functional studies demonstrated that lncMREF, which is mainly expressed in differentiated muscle satellite cells, promotes myogenic differentiation and muscle regeneration. Mechanistically, lncMREF interacts with Smarca5 to promote chromatin accessibility when muscle satellite cells are activated and start to differentiate, thereby facilitating genomic binding of p300/CBP/H3K27ac to upregulate the expression of myogenic regulators, such as MyoD and cell differentiation. Our results unravel a novel temporal-specific epigenetic regulation during muscle regeneration and reveal that lncMREF/Smarca5-mediated epigenetic programming is responsible for muscle cell differentiation, which provides new insights into the regulatory mechanism of muscle regeneration.


Assuntos
RNA Longo não Codificante , Adenosina Trifosfatases , Animais , Diferenciação Celular , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Epigênese Genética , Humanos , Camundongos , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Proteína MyoD/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regeneração , Suínos
20.
Skeletal Radiol ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849534

RESUMO

OBJECTIVE: A new axial loading device was used to investigate the effects of axial loading and positions on lumbar structure and lumbar spinal stenosis. METHODS: A total of 40 patients sequentially underwent 4 examinations: (1) the psoas-relaxed position MRI, (2) the extended position MRI, (3) the psoas-relaxed position axial loading MRI, (4) the extended position axial loading MRI. The dural sac cross-sectional area, sagittal vertebral canal diameter, disc height and ligamentum flavum thickness of L3-4, L4-5, L5-S1 and lumbar lordosis angle were measured and compared. A new device with pneumatic shoulder-hip compression mode was used for axial loading. RESULTS: In the absence of axial loading, there was a significant reduction in dural sac cross-sectional area with extension only seen at the L3-4 (p = 0.033) relative to the dural sac area in the psoas-relaxed position. However, with axial loading, there was a significant reduction in dural sac cross-sectional area at all levels in both psoas-relaxed (L3-4, p = 0.041; L5-S1, p = 0.005; L4-5, p = 0.002) and extension (p < 0.001) positions. The sagittal vertebral canal diameter and disc height were significantly reduced at all lumbar levels with axial loading and extension (p < 0.001); however, in psoas-relaxed position, the sagittal vertebral canal diameter was only reduced with axial loading at L3-4 (p = 0.018) and L4-5 (p = 0.011), and the disc height was reduced with axial-loading at all levels (L3-4, p = 0.027; L5-S1, p = 0.001; L4-5, p < 0.001). The ligamentum flavum thickness and lumbar lordosis in extension position had a statistically significant increase compared to psoas-relaxed position with or without axial loading (p < 0.001). CONCLUSION: Both axial loading and extension of lumbar may exacerbate lumbar spinal stenosis. Axial loading in extension position could maximally aggravate lumbar spinal stenosis, but may cause some patients intolerable. For those patients, axial loading MRI in psoas-relaxed position may be a good choice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA