Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Immunity ; 54(9): 2042-2056.e8, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34407391

RESUMO

Recruitment of immune cells to the site of inflammation by the chemokine CCL1 is important in the pathology of inflammatory diseases. Here, we examined the role of CCL1 in pulmonary fibrosis (PF). Bronchoalveolar lavage fluid from PF mouse models contained high amounts of CCL1, as did lung biopsies from PF patients. Immunofluorescence analyses revealed that alveolar macrophages and CD4+ T cells were major producers of CCL1 and targeted deletion of Ccl1 in these cells blunted pathology. Deletion of the CCL1 receptor Ccr8 in fibroblasts limited migration, but not activation, in response to CCL1. Mass spectrometry analyses of CCL1 complexes identified AMFR as a CCL1 receptor, and deletion of Amfr impaired fibroblast activation. Mechanistically, CCL1 binding triggered ubiquitination of the ERK inhibitor Spry1 by AMFR, thus activating Ras-mediated profibrotic protein synthesis. Antibody blockade of CCL1 ameliorated PF pathology, supporting the therapeutic potential of targeting this pathway for treating fibroproliferative lung diseases.


Assuntos
Quimiocina CCL1/metabolismo , Fibroblastos/metabolismo , Proteínas de Membrana/metabolismo , Miofibroblastos/metabolismo , Fosfoproteínas/metabolismo , Fibrose Pulmonar/metabolismo , Receptores do Fator Autócrino de Motilidade/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Diferenciação Celular/fisiologia , Fibroblastos/patologia , Humanos , Camundongos , Miofibroblastos/patologia , Fibrose Pulmonar/patologia , Transdução de Sinais/fisiologia
2.
Immunity ; 51(3): 522-534.e7, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31471107

RESUMO

Although recent progress provides mechanistic insights into the pathogenesis of pulmonary fibrosis (PF), rare anti-PF therapeutics show definitive promise for treating this disease. Repeated lung epithelial injury results in injury-repairing response and inflammation, which drive the development of PF. Here, we report that chronic lung injury inactivated the ubiquitin-editing enzyme A20, causing progressive accumulation of the transcription factor C/EBPß in alveolar macrophages (AMs) from PF patients and mice, which upregulated a number of immunosuppressive and profibrotic factors promoting PF development. In response to chronic lung injury, elevated glycogen synthase kinase-3ß (GSK-3ß) interacted with and phosphorylated A20 to suppress C/EBPß degradation. Ectopic expression of A20 or pharmacological restoration of A20 activity by disturbing the A20-GSK-3ß interaction accelerated C/EBPß degradation and showed potent therapeutic efficacy against experimental PF. Our study indicates that a regulatory mechanism of the GSK-3ß-A20-C/EBPß axis in AMs may be a potential target for treating PF and fibroproliferative lung diseases.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Macrófagos/metabolismo , Fibrose Pulmonar/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Animais , Linhagem Celular , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/fisiologia , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Regulação para Cima/fisiologia
4.
Lab Invest ; 102(10): 1054-1063, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35614340

RESUMO

Macrophage polarization mediates the development of inflammatory diseases. However, the polarization status at various stages of gout is not fully understood. Our study aimed to define the evolution of macrophage polarization in acute and chronic gout. Normal human synovium and synovium with tophi were collected for immunofluorescence (IF). Rat gouty joints were collected for joint thickness assessment and pathological evaluation. Tissue mRNA expression of inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-1) were evaluated. Mouse peritoneal macrophages and THP-1 derived macrophages were stimulated by monosodium urate (MSU) crystals and were collected for detection of interleukin (IL) -1ß and IL-37 levels and iNOS/Arg-1 ratio. Arg-1 and IL-37 were highly expressed in normal synovium and synovium with tophi. In rat gouty joints, the inflammatory cell counts and ankle thickness began to increase at 2 h, peaked at 24 h, and was decreased spontaneously. An increase in macrophages preceded the neutrophils infiltration. Infiltration of M1 was positively related with the severity of arthritis. M2 appeared in an early stage (at 2 h) of inflammation. The number of M1 macrophages was comparable to that of M2 from 2 to 12 h and exceeded M2 number at 18 h and 24 h. The ratios of M2/M1 reversed at 48 h and remained reversed until 120 h. In mice gouty joints, iNOS/Arg-1 mRNA ratio was significantly higher than the that in control group at 8 h. The proportion of neutrophils and M1-macrophages reached peak at 4 h in mice model with peritoneal gout. Concentration of IL-1ß and ratio of iNOS/Arg-1 were increased at 6 h, peaked at 48 h, and were then decreased at 72 h in vitro, while the concentration of IL-37 peaked at 2 h and then decreased. In summary, altered macrophage polarization was observed in various stages of gouty inflammation. Macrophages in acute gout were polarized into M1 at early stage and into M2 at later stage while the macrophages in chronic gout mainly were only polarized towards M2. The number of M1 rose with the progression of inflammation. Early increase of M2 was observed, which might be generated directly from M0.


Assuntos
Arginase , Gota , Animais , Gota/metabolismo , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , RNA Mensageiro/metabolismo , Ácido Úrico/metabolismo
5.
Adv Exp Med Biol ; 1208: 131-173, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34260026

RESUMO

Macroautophagy is an important biological process in eukaryotic cells by which longevity proteins, misfolded proteins, and damaged organelles are degraded. The autophagy process consists of three key steps: (1) the formation of autophagosomes; (2) the fusion of the autophagosomes with lysosomes; and (3) the degradation of the contents of autolysosomes. If any of the three steps is impaired, autophagy will not be able to complete its biological function. Dysfunctional or blocked autophagy is closely involved in the pathogenesis of a variety of diseases. The accurate determination of the autophagy activity in vivo and in vitro has become a challenge in the field of autophagy research. At present, the most widely used detection method to determine autophagy activity in mammalian cells is to quantify LC3B in the cells by Western blot, or to observe the formation and changes of autophagosomes and autolysosomes by immunofluorescence and electron microscopy. However, ignoring the dynamic characteristics of autophagy and only evaluating the number of autophagosomes or the presence of LC3B cannot completely reflect the activation or a blockage of the autophagy system, and objectively analyze its real role in the occurrence and development of a disease. For example, the accumulation of autophagosomes and autolysosomes can occur through an increase in substrate to be degraded after the activation of autophagy, or it may be caused by the partial obstruction or blockage of autophagy. In this chapter, new and familiar ways to detect the autophagic flux are methodically summarized to provide researchers with a multi-angled viewpoint.


Assuntos
Autofagossomos , Autofagia , Animais , Células Eucarióticas , Lisossomos
6.
Gastroenterology ; 156(3): 708-721.e15, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30365932

RESUMO

BACKGROUND & AIMS: Activation of Wnt signaling to ß-catenin contributes to the development of colorectal cancer (CRC). Expression of tribbles pseudo-kinase 3 (TRIB3) is increased in some colorectal tumors and associated with poor outcome. We investigated whether increased TRIB3 expression promotes stem cell features of CRC cells and tumor progression by interacting with the Wnt signaling pathway. METHODS: We performed studies with C57BL/6J-ApcMin/J mice injected with an adeno-associated virus vector that expresses a small hairpin RNA against Trib3 mRNA (ApcMin/J-Trib3KD) or a control vector (ApcMin/J-Ctrl). We created BALB/c mice that overexpress TRIB3 from an adeno-associated virus vector and mice with small hairpin RNA-mediated knockdown of ß-catenin. The mice were given azoxymethane followed by dextran sodium sulfate to induce colitis-associated cancer. Intestinal tissues were collected and analyzed by histology, gene expression profiling, immunohistochemistry, and immunofluorescence. Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5)-positive (LGR5Pos) and LGR5-negative (LGR5Neg) HCT-8 CRC cells, with or without knockdown or transgenic expression of TRIB3, were sorted and analyzed in sphere-formation assays. We derived organoids from human and mouse colorectal tumors to analyze the function of TRIB3 and test the effect of a peptide inhibitor. Wnt signaling to ß-catenin was analyzed in dual luciferase reporter, chromatin precipitation, immunofluorescence, and immunoblot assays. Proteins that interact with TRIB3 were identified by immunoprecipitation. CRC cell lines were grown in nude mice as xenograft tumors. RESULTS: At 10 weeks of age, more than half the ApcMin/J-Ctrl mice developed intestinal high-grade epithelial neoplasia, whereas ApcMin/J-Trib3KD mice had no intestinal polyps and normal histology. Colon tissues from ApcMin/J-Trib3KD mice expressed lower levels of genes regulated by ß-catenin and genes associated with cancer stem cells. Mice with overexpression of Trib3 developed more tumors after administration of azoxymethane and dextran sodium sulfate than BALB/c mice. Mice with knockdown of ß-catenin had a lower tumor burden after administration of azoxymethane and dextran sodium sulfate, regardless of Trib3 overexpression. Intestinal tissues from mice with overexpression of Trib3 and knockdown of ß-catenin did not have activation of Wnt signaling or expression of genes regulated by ß-catenin. LGR5Pos cells sorted from HCT-8 cells expressed higher levels of TRIB3 than LGR5Neg cells. CRC cells that overexpressed TRIB3 had higher levels of transcription by ß-catenin and formed larger spheroids than control CRC cells; knockdown of ß-catenin prevented the larger organoid size caused by TRIB3 overexpression. TRIB3 interacted physically with ß-catenin and transcription factor 4 (TCF4). TRIB3 overexpression increased, and TRIB3 knockdown decreased, recruitment of TCF4 and ß-catenin to the promoter region of genes regulated by Wnt. Activated ß-catenin increased expression of TRIB3, indicating a positive-feedback loop. A peptide (P2-T3A6) that bound ß-catenin disrupted its interaction with TRIB3 and TCF4. In primary CRC cells and HCT-8 cells, P2-T3A6 decreased expression of genes regulated by ß-catenin and genes associated with cancer stem cells and decreased cell viability and migration. Injection of C57BL/6J-ApcMin/J mice with P2-T3A6 decreased the number and size of tumor nodules and colon expression of genes regulated by ß-catenin. P2-T3A6 increased 5-fluorouracil-induced death of CRC cells and survival times of mice with xenograft tumors. CONCLUSION: TRIB3 interacts with ß-catenin and TCF4 in intestine cells to increase expression of genes associated with cancer stem cells. Knockdown of TRIB3 decreases colon neoplasia in mice, migration of CRC cells, and their growth as xenograft tumors in mice. Strategies to block TRIB3 activity might be developed for treatment of CRC.


Assuntos
Carcinogênese/genética , Proteínas de Ciclo Celular/genética , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/genética , beta Catenina/metabolismo , Animais , Comunicação Celular/genética , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Distribuição Aleatória , Sensibilidade e Especificidade , Regulação para Cima , Via de Sinalização Wnt/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Adv Exp Med Biol ; 1207: 559-567, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32671774

RESUMO

Chronic Obstructive Pulmonary Disease (COPD) is a classical chronic respiratory disease with the pathological changes involving the bronchi and alveoli. Many of the risk factors of COPD can induce autophagy in different kinds of cells in lung tissue including alveolar epithelial cells, broncho epithelial cells, and fibroblasts. Over-activation of autophagy may cause emphysema by inducing autophagic cell death. However, the bronchitis and fibrosis may be mainly caused by autophagic flux blocking. Thus, understanding the role of autophagy in the pathogenesis of COPD is important for the anti-COPD drug development.


Assuntos
Autofagia , Doença Pulmonar Obstrutiva Crônica , Brônquios , Humanos , Alvéolos Pulmonares , Enfisema Pulmonar
8.
Adv Exp Med Biol ; 1207: 569-579, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32671775

RESUMO

Pulmonary fibrosis is a progressive chronic inflammatory disease with a poor clinical outcome. Although pirfenidone and nintedanib have been approved by FDA to treat idiopathic pulmonary fibrosis (IPF), these drugs can only slow the progression of IPF. Autophagy plays an important role in the pathogenesis of pulmonary fibrosis. Whether the autophagic flux is blocked or not is directly related to the development direction of pulmonary fibrosis. Defining how autophagy activity regulates the pathogenesis of pulmonary fibrosis will greatly advance the progression of pulmonary fibrosis therapy.


Assuntos
Autofagia , Fibrose Pulmonar , Progressão da Doença , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Fibrose Pulmonar/tratamento farmacológico , Piridonas/farmacologia , Piridonas/uso terapêutico
9.
Adv Exp Med Biol ; 1207: 581-584, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32671776

RESUMO

Asthma is one of the most common diseases of the respiratory system, with typical pathogenesis and pathological changes. The current research shows that autophagy is mainly involved in the pathogenesis of asthma by regulating the body's innate and adaptive immune responses. At the same time, a large number of epidemiological studies have shown that multiple autophagy genes affect the risk of asthma at the level of genetic polymorphism. This chapter will explore the relationship between autophagy and asthma.


Assuntos
Asma , Autofagia , Asma/genética , Asma/imunologia , Autofagia/genética , Autofagia/imunologia , Humanos , Polimorfismo Genético
10.
Adv Exp Med Biol ; 1207: 585-597, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32671777

RESUMO

Besides COPD, pulmonary fibrosis, and asthma, autophagy also participates in the development of many other respiratory diseases. Cystic fibrosis is an innate lung disease. Unlike idiopathic pulmonary fibrosis, cystic fibrosis has unique pathogenesis. Autophagy is an essential biological mechanism for the removal of misfolded proteins and damaged organelles in cells. Abnormal autophagy activity is involved in the pathogenesis of cystic fibrosis. Various studies have demonstrated that abnormalities or impaired autophagy are associated with cardiovascular diseases including pulmonary vascular disease. Autophagy plays a key role in maintaining normal vascular biological functions and vascular cell tissue homeostasis, and also plays an important role in the pathogenesis of various vascular diseases. For example, recent studies have found that autophagy participates in the occurrence and development of pulmonary hypertension. In addition, autophagy plays a central role in both innate and adaptive immune responses in immune cells or other cells with immune function. Thus, autophagy is the important cellular biological mechanism which causes cell fighting against pathogenic microorganisms including viruses, bacteria, and parasites. In this chapter, we discuss the work related to autophagy and other lung diseases.


Assuntos
Autofagia , Pneumopatias , Fibrose Cística , Humanos , Hipertensão Pulmonar , Fibrose Pulmonar Idiopática
11.
J Asian Nat Prod Res ; 19(2): 101-108, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28252344

RESUMO

Tissue fibrosis is a common pathologic change of many chronic diseases, which is characterized by extracellular matrix accumulation in tissues and dysfunction of the injured organs. Despite there recently gain mechanistic insight into the pathogenesis of tissue fibrosis, therapeutics for tissue fibrosis and thus many chronic diseases remain a significant clinical unmet need. Recent progressions indicate that autophagy, a conserved lysosomal degradation process in eukaryotic cells, not only plays an important regulatory role in maintaining cellular and tissue homeostasis, but also contributes to the development and progression of tissue fibrosis in a diversity of organs. Interestingly, a number of natural compounds derived from plant or Chinese Herb Medicines (CHM), have been identified as modulators of autophagy, and may function as potential therapeutic agents for the treatment of different fibrotic diseases. In this review, we focus on several plant natural compounds that have well-known anti-fibrotic effects through regulating autophagic signal pathways or autophagy activity. These findings should provide important therapeutic clues and strategy for the development of new anti-fibrosis drugs.


Assuntos
Autofagia/efeitos dos fármacos , Fibrose/tratamento farmacológico , Humanos , Estrutura Molecular , Transdução de Sinais/efeitos dos fármacos
12.
Int J Cancer ; 134(3): 692-702, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23852533

RESUMO

Cell-penetrating peptides provide a unique platform to create a new generation of cancer therapeutics with enhanced efficacy and diminished toxicity. In our study, enhanced expression of toll-like receptor 2 (TLR2) was observed in acute myeloid leukemia (AML) cells. Screening of a phage display peptide library using Biopanning and Rapid Analysis of Selective Interactive Ligands (BRASIL) identified a TLR2-binding peptide motif, Pep2. We show that the TLR2-binding peptide motif targeted and penetrated into leukemia cells in a TLR2-dependent manner. Moreover, a synthetic, chimeric peptide composed of the TLR2-binding motif linked to a programmed cell death-inducing sequence, D(KLAKLAK)2, induced apoptosis in AML cells with high TLR2 expression (TLR2(high)) but not in chronic myeloid leukemia (CML) cells with low TLR2 expression (TLR2(low)). The antileukemia activity of this chimeric peptide was confirmed in leukemia patient samples and an animal model of myeloid leukemia, as the development of leukemia was significantly delayed in mice with TLR2(high) AML compared to TLR2(low) CML NOD/SCID mice. TUNEL assays on bone marrow tissue slices revealed that the chimerical peptide induced leukemia cell apoptosis in a TLR2-dependent manner. Together, our findings indicate that TLR2 is a potential therapeutic target for the prevention and treatment of AML, and the prototype, Pep2-D(KLAKLAK)2, is a promising drug candidate in this setting.


Assuntos
Apoptose , Leucemia Mieloide Aguda/tratamento farmacológico , Peptídeos/uso terapêutico , Receptor 2 Toll-Like/química , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Leucemia Mieloide Aguda/patologia , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacocinética , Ressonância de Plasmônio de Superfície , Receptor 2 Toll-Like/metabolismo
13.
Hepatology ; 57(5): 1869-81, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23299825

RESUMO

UNLABELLED: Hepatocellular carcinoma (HCC) is a devastating consequence of chronic inflammatory liver diseases. The goal of this study was to investigate whether Toll-like receptor 4 (TLR4) activity contributes to HCC initiation and progression in mice. A mouse model of diethylnitrosamine (DEN)-induced HCC was generated with wild-type and TLR4 mutant mice, and the development and progression of HCC and senescent responses were assessed using morphologic, immunological, and biochemical criteria. We found that genetic or pharmacologic blocking of TLR4 increased susceptibility to DEN-induced HCC carcinogenesis and progression, which was indicated by increases in number of tumor nodules, tumor volume, and animal death. The enhanced HCC was associated with a broad-spectrum reduction of immune response to DEN liver injury, as indicated by decreases in the liver-infiltrating F4/80+ macrophages, the apoptosis signal-regulating kinase 1/p38 mitogen-activated protein kinase/NF-κB and IRF3 signaling activities, and the expression of inflammatory cytokines. Suppressed immune networks resulted in a halt of cellular senescence induction in TLR4 mutant liver tissue, which promoted proliferation and suppressed programmed cell death. Moreover, TLR4 mutation resulted in a suppressed capacity of DNA repair due to a decrease in TLR4-medicated expression of DNA repair proteins Ku70/80 in liver tissue and cells. Isotopic expression of Ku70 in TLR4 mutant mice restored senescence and interrupted the positive feedback loop of DNA damage and oxidative stress, which reversed TLR4 mutation-deteriorated HCC carcinogenesis and progression. CONCLUSION: TLR4 plays an integrated defense role against HCC carcinogenesis by enhancing the expression and function of DNA repair protein Ku70. Our studies provide novel insight into TLR4 activity in the regulation of HCC tumorigenesis, which may be useful for the prevention of HCC development.


Assuntos
Antígenos Nucleares/fisiologia , Carcinoma Hepatocelular/prevenção & controle , Transformação Celular Neoplásica , Proteínas de Ligação a DNA/fisiologia , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Hepáticas/prevenção & controle , Receptor 4 Toll-Like/fisiologia , Animais , Antígenos Nucleares/genética , Apoptose/fisiologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/fisiopatologia , Transformação Celular Neoplásica/induzido quimicamente , Reparo do DNA/genética , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/genética , Dietilnitrosamina/efeitos adversos , Modelos Animais de Doenças , Feminino , Autoantígeno Ku , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Mutantes , Mutação/genética , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/genética
14.
Acta Pharmacol Sin ; 34(8): 1025-35, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23852085

RESUMO

AIM: Toll-like receptor 2 (TLR2) signaling plays a critical role in the initiation of atherosclerosis. The aim of this study was to investigate whether blocking TLR2 activity could produce therapeutic effects on advanced atherosclerosis. METHODS: Forty-week old apolipoprotein E-deficient (ApoE(-/-)) mice fed on a normal diet were intravenously injected with a TLR2-neutralizing antibody or with an isotype-matched IgG for 18 weeks. Double-knockout ApoE(-/-)Tlr2(-/-) mice were taken as a positive control. At the end of the treatments, the plasma lipid levels were measured, and the plaque morphology, pro-inflammatory cytokines expression and apoptosis in arteries were analyzed. In the second part of this study, 6-week old ApoE(-/-) and ApoE(-/-)Tlr2(-/-) mice fed on a high-cholesterol diet for 12 to 24 weeks, the expression levels of TLR2 and apoptotic markers in arteries were examined. RESULTS: Blockade of TLR2 activity with TLR2-neutralizing antibody or knockout of Tlr2 gene did not alter the plasma lipid levels in ApoE(-/-) mice. However, the pharmacologic and genetic manipulations significantly reduced the plaque size and vessel stenosis, and increased plaque stability in the brachiocephalic arteries. The protective effects of TLR2 antagonism were associated with the suppressed expression of pro-inflammatory cytokines IL-6 and TNF-α and the inactivation of transcription factors NF-κB and Stat3. In addition, blocking TLR2 activity attenuated ER stress-induced macrophage apoptosis in the brachiocephalic arteries, which could promote the resolution of necrotic cores in advanced atherosclerosis. Moreover, high-cholesterol diet more prominently accelerated atherosclerotic formation and increased the expression of pro-apoptotic protein CHOP and apoptosis in ApoE(-/-) mice than in ApoE(-/-)Tlr2(-/-) mice. CONCLUSION: The pharmacologic or genetic blockade of TLR2 activity diminishes and stabilizes advanced atherosclerotic lesions in ApoE(-/-) mice. Thus, targeting TLR2 signaling may be a promising therapeutic strategy against advanced atherosclerosis.


Assuntos
Apolipoproteínas E/deficiência , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , Receptor 2 Toll-Like/antagonistas & inibidores , Receptor 2 Toll-Like/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/patologia , Distribuição Aleatória
15.
Artigo em Inglês | MEDLINE | ID: mdl-37807411

RESUMO

BACKGROUND: The Fule Cream (FLC) is an herbal formula widely used for the treatment of pediatric atopic dermatitis (AD), however, the main active components and functional mechanisms of FLC remain unclear. This study performed an initial exploration of the potential acting mechanisms of FLC in childhood AD treatment through analyses of an AD mouse model using network pharmacology, molecular docking technology, and RNA-seq analysis. METHODS: The main bioactive ingredients and potential targets of FLC were collected from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and SwissTargetPrediction databases. An herb-compound-target network was built using Cytoscape 3.7.2. The disease targets of pediatric AD were searched in the DisGeNET, Therapeutic Target Database (TTD), OMIM, DrugBank and GeneCards databases. The overlapping targets between the active compounds and the disease were imported into the STRING database for the construction of the protein-protein interaction (PPI) network. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the intersection targets were performed, and molecular docking verification of the core compounds and targets was then performed using AutoDock Vina 1.1.2. The AD mouse model for experimental verification was induced by MC903. RESULTS: The herb-compound-target network included 415 nodes and 1990 edges. Quercetin, luteolin, beta-sitosterol, wogonin, ursolic acid, apigenin, stigmasterol, kaempferol, sitogluside and myricetin were key nodes. The targets with higher degree values were IL-4, IL-10, IL-1α, IL-1ß, TNFα, CXCL8, CCL2, CXCL10, CSF2, and IL-6. GO enrichment and KEGG analyses illustrated that important biological functions involved response to extracellular stimulus, regulation of cell adhesion and migration, inflammatory response, cellular response to cytokine stimulus, and cytokine receptor binding. The signaling pathways in the FLC treatment of pediatric AD mainly involve the PI3K-Akt signaling pathway, cytokine‒cytokine receptor interaction, chemokine signaling pathway, TNF signaling pathway, and NF-κB signaling pathway. The binding energy scores of the compounds and targets indicate a good binding activity. Luteolin, quercetin, and kaempferol showed a strong binding activity with TNFα and IL-4. CONCLUSION: This study illustrates the main bioactive components and potential mechanisms of FLC in the treatment of childhood AD, and provides a basis and reference for subsequent exploration.

16.
Acta Pharm Sin B ; 13(4): 1631-1647, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37139431

RESUMO

Pulmonary fibrosis (PF) is the pathological structure of incurable fibroproliferative lung diseases that are attributed to the repeated lung injury-caused failure of lung alveolar regeneration (LAR). Here, we report that repetitive lung damage results in a progressive accumulation of the transcriptional repressor SLUG in alveolar epithelial type II cells (AEC2s). The abnormal increased SLUG inhibits AEC2s from self-renewal and differentiation into alveolar epithelial type I cells (AEC1s). We found that the elevated SLUG represses the expression of the phosphate transporter SLC34A2 in AEC2s, which reduces intracellular phosphate and represses the phosphorylation of JNK and P38 MAPK, two critical kinases supporting LAR, leading to LAR failure. TRIB3, a stress sensor, interacts with the E3 ligase MDM2 to suppress SLUG degradation in AEC2s by impeding MDM2-catalyzed SLUG ubiquitination. Targeting SLUG degradation by disturbing the TRIB3/MDM2 interaction using a new synthetic staple peptide restores LAR capacity and exhibits potent therapeutic efficacy against experimental PF. Our study reveals a mechanism of the TRIB3-MDM2-SLUG-SLC34A2 axis causing the LAR failure in PF, which confers a potential strategy for treating patients with fibroproliferative lung diseases.

17.
Sci Transl Med ; 15(726): eade4113, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091408

RESUMO

Tumor-initiating cells (TICs) reprogram their metabolic features to meet their bioenergetic, biosynthetic, and redox demands. Our previous study established a role for wild-type isocitrate dehydrogenase 1 (IDH1WT) as a potential diagnostic and prognostic biomarker for non-small cell lung cancer (NSCLC), but how IDH1WT modulates NSCLC progression remains elusive. Here, we report that IDH1WT activates serine biosynthesis by enhancing the expression of phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase 1 (PSAT1), the first and second enzymes of de novo serine synthetic pathway. Augmented serine synthesis leads to GSH/ROS imbalance and supports pyrimidine biosynthesis, maintaining tumor initiation capacity and enhancing gemcitabine chemoresistance. Mechanistically, we identify that IDH1WT interacts with and stabilizes PHGDH and fragile X-related protein-1 (FXR1) by impeding their association with the E3 ubiquitin ligase parkin by coimmunoprecipitation assay and proximity ligation assay. Subsequently, stabilized FXR1 supports PSAT1 mRNA stability and translation, as determined by actinomycin D chase experiment and in vitro translation assay. Disrupting IDH1WT-PHGDH and IDH1WT-FXR1 interactions synergistically reduces NSCLC stemness and sensitizes NSCLC cells to gemcitabine and serine/glycine-depleted diet therapy in lung cancer xenograft models. Collectively, our findings offer insights into the role of IDH1WT in serine metabolism, highlighting IDH1WT as a potential therapeutic target for eradicating TICs and overcoming gemcitabine chemoresistance in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Gencitabina , Resistencia a Medicamentos Antineoplásicos , Serina/metabolismo , Vias Biossintéticas , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/metabolismo , Isocitrato Desidrogenase/metabolismo
18.
Acta Pharm Sin B ; 13(3): 1110-1127, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36970190

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with unclear etiology and limited treatment options. The median survival time for IPF patients is approximately 2-3 years and there is no effective intervention to treat IPF other than lung transplantation. As important components of lung tissue, endothelial cells (ECs) are associated with pulmonary diseases. However, the role of endothelial dysfunction in pulmonary fibrosis (PF) is incompletely understood. Sphingosine-1-phosphate receptor 1 (S1PR1) is a G protein-coupled receptor highly expressed in lung ECs. Its expression is markedly reduced in patients with IPF. Herein, we generated an endothelial-conditional S1pr1 knockout mouse model which exhibited inflammation and fibrosis with or without bleomycin (BLM) challenge. Selective activation of S1PR1 with an S1PR1 agonist, IMMH002, exerted a potent therapeutic effect in mice with bleomycin-induced fibrosis by protecting the integrity of the endothelial barrier. These results suggest that S1PR1 might be a promising drug target for IPF therapy.

19.
Front Pharmacol ; 14: 1118017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124193

RESUMO

Aberrant mitophagy has been identified as a driver for energy metabolism disorder in most cardiac pathological processes. However, finding effective targeted agents and uncovering their precise modulatory mechanisms remain unconquered. Fuzi, the lateral roots of Aconitum carmichaelii, shows unique efficacy in reviving Yang for resuscitation, which has been widely used in clinics. As a main cardiotonic component of Fuzi, mesaconine has been proven effective in various cardiomyopathy models. Here, we aimed to define a previously unrevealed cardioprotective mechanism of mesaconine-mediated restoration of obstructive mitophagy. The functional implications of mesaconine were evaluated in doxorubicin (DOX)-induced heart failure models. DOX-treated mice showed characteristic cardiac dysfunction, ectopic myocardial energy disorder, and impaired mitophagy in cardiomyocytes, which could be remarkably reversed by mesaconine. The cardioprotective effect of mesaconine was primarily attributed to its ability to promote the restoration of mitophagy in cardiomyocytes, as evidenced by elevated expression of PINK1, a key mediator of mitophagy induction. Silencing PINK1 or deactivating mitophagy could completely abolish the protective effects of mesaconine. Together, our findings suggest that the cardioprotective effects of mesaconine appear to be dependent on the activation of PINK1-induced mitophagy and that mesaconine may constitute a promising therapeutic agent for the treatment of heart failure.

20.
Nat Commun ; 14(1): 7661, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996458

RESUMO

Elimination of cancer stem cells (CSCs) and reinvigoration of antitumor immunity remain unmet challenges for cancer therapy. Tumor-associated macrophages (TAMs) constitute the prominant population of immune cells in tumor tissues, contributing to the formation of CSC niches and a suppressive immune microenvironment. Here, we report that high expression of inhibitor of differentiation 1 (ID1) in TAMs correlates with poor outcome in patients with colorectal cancer (CRC). ID1 expressing macrophages maintain cancer stemness and impede CD8+ T cell infiltration. Mechanistically, ID1 interacts with STAT1 to induce its cytoplasmic distribution and inhibits STAT1-mediated SerpinB2 and CCL4 transcription, two secretory factors responsible for cancer stemness inhibition and CD8+ T cell recruitment. Reducing ID1 expression ameliorates CRC progression and enhances tumor sensitivity to immunotherapy and chemotherapy. Collectively, our study highlights the pivotal role of ID1 in controlling the protumor phenotype of TAMs and paves the way for therapeutic targeting of ID1 in CRC.


Assuntos
Neoplasias Colorretais , Macrófagos , Humanos , Macrófagos/metabolismo , Imunoterapia , Linfócitos T CD8-Positivos , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Neoplasias Colorretais/metabolismo , Linfócitos T/metabolismo , Microambiente Tumoral/genética , Proteína 1 Inibidora de Diferenciação/genética , Proteína 1 Inibidora de Diferenciação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA