Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 254: 116221, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38513541

RESUMO

Antibiotics are widely used for treating bacterial infections. However, excessive or improper use of antibiotics can pose a serious threat to human health and water environments, and thus, developing cost-effective, portable and effective strategies to analyze and detect antibiotics is highly desired. Herein, we reported a responsive photonic hydrogel (RPH)-based optical biosensor (PPNAH) with superior recyclability for sensitive and colorimetric determination of a typical ß-lactam antibiotic penicillin G (PG) in water. This sensor was composed of poly(N-isopropylacrylamide-co-acrylamide) smart hydrogel with incorporated penicillinase and Fe3O4@SiO2 colloidal photonic crystals (CPCs). The sensor could translate PG concentration signals into changes in the diffraction wavelength and structural color of the hydrogel. It possessed high sensitivity and selectivity to PG and excellent detection performances for other two typical ß-lactam antibiotics. Most importantly, due to the unique thermosensitivity of the poly(N-isopropylacrylamide) moieties in the hydrogel, the PG-responded PPNAH sensor could be facilely regenerated via a simple physical method at least fifty times while without compromising its response performance. Besides, our sensor was suitable for monitoring the PG-contaminated environmental water and displayed satisfactory detection performances. Such a sensor possessed obvious advantages of superior recyclability, highly chemical stability, low production cost, easy fabrication, wide range of visual detection, simple and intuitive operation for PG detection, and environmental-friendliness, which holds great potential in sensitive and colorimetric detection of the PG residues in polluted water.


Assuntos
Acrilamidas , Resinas Acrílicas , Técnicas Biossensoriais , Hidrogéis , Humanos , Hidrogéis/química , Penicilinase , Acrilamida , Colorimetria , Dióxido de Silício , Técnicas Biossensoriais/métodos , Penicilina G , Antibacterianos/análise , Água
2.
Int J Biol Macromol ; 278(Pt 1): 134457, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111487

RESUMO

The optimization of hydrogel structure is crucial for adsorption capacity, mechanical stability, and reusability. Herein, a chitosan and laponite-XLS co-doped poly(acrylic acid-co-acrylamide) hydrogel (CXAA) with honeycomb-like porous structures is synthesized by cooperative cross-linking of 2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC) and laponite-XLS in reticular frameworks of acrylic acid (AAc) and acrylamide (AM). The CXAA exhibits extraordinary mechanical performances including tough tensile strength (3.36 MPa) and elasticity (2756 %), which facilitates recycling in practical adsorption treatment and broadens potential applications. Since the regular porous structures can fully expose numerous adsorption sites and electronegative natures within polymer materials, CXAA displays efficient and selective adsorption properties for cationic dyes like methylene blue (MB) and malachite green (MG) from mixed pollutants and can reach record-high values (MB = 6886 mg g-1, MG = 11,381 mg g-1) compared with previously reported adsorbents. Therefore, CXAA exhibits promising potential for separating cationic and anionic dyes by their charge disparities. Mechanism studies show that the synergistic effects of HACC, laponite-XLS, and functional groups in monomers promote highly efficient adsorption. Besides, the adsorption capacity of CXAA remains stable even after undergoing five cycles of regeneration. The results confirm that CXAA is a promising adsorbent for effectively removing organic dyes in wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA