Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Invest ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190625

RESUMO

Cardiac macrophages/monocytes participate in maintaining homeostasis and orchestrating cardiac responses upon injury. However, the function of specific macrophage/monocyte subtypes and the related cell fate commitment mechanisms remain elusive in regenerative and nonregenerative hearts due to their cellular heterogeneities. Using spatiotemporal single-cell epigenomic analysis of cardiac macrophages/monocytes in regenerative (P1) and nonregenerative (P10) mouse hearts post injury, we found that P1 hearts accumulate reparative Arg1+ macrophages, while proinflammatory S100a9+Ly6c+ monocytes are uniquely abundant during nonregenerative remodeling. Moreover, blocking chemokine CXCR2 to inhibit the specification of the S100a9+Ly6c+-biased inflammatory fate in P10 hearts resulted in elevated wound repair responses and marked improvements in cardiac function after injury. Single-cell RNA-seq further confirmed an increased Arg1+ macrophage subpopulation after CXCR2 blockade, which was accomplished by increased expression of wound repair-related genes and reduced expression of proinflammatory genes. Collectively, our findings provide instructive insights into the molecular mechanisms underlying the function and fate specification of heterogeneous macrophages/monocytes during cardiac repair and identify potential therapeutic targets for myocardial infarction.

2.
Zool Res ; 45(3): 617-632, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38766745

RESUMO

The Chinese tree shrew ( Tupaia belangeri chinensis) has emerged as a promising model for investigating adrenal steroid synthesis, but it is unclear whether the same cells produce steroid hormones and whether their production is regulated in the same way as in humans. Here, we comprehensively mapped the cell types and pathways of steroid metabolism in the adrenal gland of Chinese tree shrews using single-cell RNA sequencing, spatial transcriptome analysis, mass spectrometry, and immunohistochemistry. We compared the transcriptomes of various adrenal cell types across tree shrews, humans, macaques, and mice. Results showed that tree shrew adrenal glands expressed many of the same key enzymes for steroid synthesis as humans, including CYP11B2, CYP11B1, CYB5A, and CHGA. Biochemical analysis confirmed the production of aldosterone, cortisol, and dehydroepiandrosterone but not dehydroepiandrosterone sulfate in the tree shrew adrenal glands. Furthermore, genes in adrenal cell types in tree shrews were correlated with genetic risk factors for polycystic ovary syndrome, primary aldosteronism, hypertension, and related disorders in humans based on genome-wide association studies. Overall, this study suggests that the adrenal glands of Chinese tree shrews may consist of closely related cell populations with functional similarity to those of the human adrenal gland. Our comprehensive results (publicly available at http://gxmujyzmolab.cn:16245/scAGMap/) should facilitate the advancement of this animal model for the investigation of adrenal gland disorders.


Assuntos
Glândulas Suprarrenais , Esteroides , Animais , Glândulas Suprarrenais/metabolismo , Humanos , Esteroides/biossíntese , Esteroides/metabolismo , Transcriptoma , Camundongos , Tupaiidae , Feminino , Multiômica
3.
Cancer Res ; 83(5): 700-719, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36607615

RESUMO

Clear cell renal cell carcinoma (ccRCC) frequently features a high level of tumor heterogeneity. Elucidating the chromatin landscape of ccRCC at the single-cell level could provide a deeper understanding of the functional states and regulatory dynamics underlying the disease. Here, we performed single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) on 19 ccRCC samples, and whole-exome sequencing was used to understand the heterogeneity between individuals. Single-cell transcriptome and chromatin accessibility maps of ccRCC were constructed to reveal the regulatory characteristics of different tumor cell subtypes in ccRCC. Two long noncoding RNAs (RP11-661C8.2 and CTB-164N12.1) were identified that promoted the invasion and migration of ccRCC, which was validated with in vitro experiments. Taken together, this study comprehensively characterized the gene expression and DNA regulation landscape of ccRCC, which could provide new insights into the biology and treatment of ccRCC. SIGNIFICANCE: A comprehensive analysis of gene expression and DNA regulation in ccRCC using scATAC-seq and scRNA-seq reveals the DNA regulatory programs of ccRCC at the single-cell level.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Cromatina , Epigênese Genética , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Análise de Célula Única
4.
Biomed Res Int ; 2022: 5312897, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800224

RESUMO

Objective: It was to investigate the mechanism of atrial fibrillation after mitral valve replacement under extracorporeal circulation in patients with rheumatic heart disease under sevoflurane anesthesia maintenance and to provide scientific and effective basis for clinical treatment. Methods: Forty patients with rheumatic heart disease who underwent mitral valve replacement were randomly rolled into group I (sinus rhythm of propofol anesthesia, n = 10), group II (atrial fibrillation rhythm of propofol anesthesia, n = 10), group III (sinus rhythm of sevoflurane anesthesia, n = 10), and group IV (atrial fibrillation rhythm of sevoflurane anesthesia, n = 10). Inflammatory factors, free tissue of right atrium, and incidence of postoperative atrial fibrillation were compared among all groups. Results: (i) The serum levels of NT-proBNP, CRP, sST-2, IL-6, TNF-α, and TGF-ß1 in group II were higher than those in group I, group III, and group IV, and the indexes in group III were higher than those in group IV (P < 0.05). (ii) The relative expression levels of PLB, CaMK II, Bax, and TP53 in the free tissue of right atrium in group II were higher than those in group I, III, and IV, and the index levels in group IV were higher than those in group III (P < 0.05). (iii) The incidence of postoperative atrial fibrillation in group III (0.00%) was significantly lower than that in group I (30%), group II (50%), and group IV (40.0%), and group II (50%) was the highest (P < 0.05). Conclusion: The maintenance of sevoflurane anesthesia can improve the inflammatory response and myocardial tissue autophagy in patients with sinus rhythm and atrial fibrillation rhythm and can reduce the incidence of postoperative atrial fibrillation in patients.


Assuntos
Anestesia , Fibrilação Atrial , Propofol , Cardiopatia Reumática , Anestesia/efeitos adversos , Ponte Cardiopulmonar/efeitos adversos , Humanos , Valva Mitral/cirurgia , Complicações Pós-Operatórias , Cardiopatia Reumática/cirurgia , Sevoflurano/uso terapêutico
5.
Front Oncol ; 12: 871489, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494058

RESUMO

Background: Testicular cancer is the most common solid malignancy in young men. Given the many histological classifications of testicular tumors, seminoma is one of the most treatable cancers. The survival rate in early-stage disease was more than 90%. Thus, seminoma at the cellular and molecular levels, especially at the single-cell level, is worth studying. Methods: We performed a single-cell RNA sequencing (scRNA-seq) study on a patient who was diagnosed with testicular seminoma with lymph node metastasis. This study presented tumor tissue, PBMC, pelvic and renal hilus lymph node in a total of 18,206 high-quality single-cell transcriptome information. The characteristics of metastatic cell lineage were revealed by the comparison between different tumor cell subtypes at the scRNA level. Results: A single-cell map of testicular seminoma with lymph node metastasis was constructed by scRNA-seq. We discovered the gene expression characteristics of the tumor cells in testicular seminoma, especially metastatic tumor cells. KRT8 and KRT18 were commonly expressed in the three tumor cell subtypes. However, TCF7L1, SCG3 and SV2C were the specifically expressed genes of tumor cell subtypes in primary tumor sites. Some molecular markers specifically expressed by the metastatic cell lineage, such as POU5F1, were identified. Conclusions: We revealed the molecular characteristics of testicular seminoma at the single-cell level, especially the metastatic tumor cells. This study could provide new insights into the diagnosis and treatment of testicular seminoma.

6.
Front Endocrinol (Lausanne) ; 13: 1036517, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465633

RESUMO

Human fetal adrenal glands produce substantial amounts of dehydroepiandrosterone (DHEA), which is one of the most important precursors of sex hormones. However, the underlying biological mechanism remains largely unknown. Herein, we sequenced human fetal adrenal glands and gonads from 7 to 14 gestational weeks (GW) via 10× Genomics single-cell transcriptome techniques, reconstructed their location information by spatial transcriptomics. Relative to gonads, adrenal glands begin to synthesize steroids early. The coordination among steroidogenic cells and multiple non-steroidogenic cells promotes adrenal cortex construction and steroid synthesis. Notably, during the window of sexual differentiation (8-12 GW), key enzyme gene expression shifts to accelerate DHEA synthesis in males and cortisol synthesis in females. Our research highlights the robustness of the action of fetal adrenal glands on gonads to modify the process of sexual differentiation.


Assuntos
Feto , Gônadas , Feminino , Masculino , Humanos , Diferenciação Sexual , Glândulas Suprarrenais , Desidroepiandrosterona
7.
Front Oncol ; 11: 659251, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168986

RESUMO

Bilateral renal cell carcinoma (RCC) is a rare disease that can be classified as either familial or sporadic. Studying the cellular molecular characteristics of sporadic bilateral RCC is important to provide guidance for clinical treatment. Cellular molecular characteristics can be expressed at the RNA level, especially at the single-cell degree. Single-cell RNA sequencing (scRNA-seq) was performed on bilateral clear cell RCC (ccRCC). A total of 3,575 and 3,568 high-quality single-cell transcriptome data were captured from the left and right tumour tissues, respectively. Gene characteristics were identified by comparing left and right tumours at the scRNA level. The complex cellular environment of bilateral ccRCC was presented by using scRNA-seq. Single-cell transcriptomic analysis revealed high similarity in gene expression among most of the cell types of bilateral RCCs but significant differences in gene expression among different site tumour cells. Additionally, the potential biological function of different tumour cell types was determined by gene ontology (GO) analysis. The transcriptome characteristics of tumour tissues in different locations at the single-cell transcriptome level were revealed through the scRNA-seq of bilateral sporadic ccRCC. This work provides new insights into the diagnosis and treatment of bilateral RCC.

8.
Front Oncol ; 11: 719564, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722263

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) is the most common type of kidney cancer. Studying the pathogenesis of RCC is particularly important, because it could provide a direct guide for clinical treatment. Given that tumor heterogeneity is probably reflected at the mRNA level, the study of mRNA in RCC may reveal some potential tumor-specific markers, especially single-cell RNA sequencing (scRNA-seq). METHODS: We performed an exploratory study on three pathological types of RCC with a small sample size. This study presented clear-cell RCC (ccRCC), type 2 pRCC, and chRCC in a total of 30,263 high-quality single-cell transcriptome information from three pathological types of RCC. In addition, scRNA-seq was performed on normal kidneys. Tumor characteristics were well identified by the comparison between different pathological types of RCC and normal kidneys at the scRNA level. RESULTS: Some new tumor-specific markers for different pathologic types of RCC, such as SPOCK1, PTGIS, REG1A, CP and SPAG4 were identified and validated. We also discovered that NDUFA4L2 both highly expressed in tumor cells of ccRCC and type 2 pRCC. The presence of two different types of endothelial cells in ccRCC and type 2 pRCC was also identified and verified. An endothelial cell in ccRCC may be associated with fibroblasts and significantly expressed fibroblast markers, such as POSTN and COL3A1. At last, by applying scRNA-seq results, the activation of drug target pathways and sensitivity to drug responses was predicted in different pathological types of RCC. CONCLUSIONS: Taken together, these findings considerably enriched the single-cell transcriptomic information for RCC, thereby providing new insights into the diagnosis and treatment of RCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA