Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Bioconjug Chem ; 35(6): 855-866, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38789102

RESUMO

Antibody effector functions including antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP) are mediated through the interaction of the antibody Fc region with Fcγ receptors present on immune cells. Several approaches have been used to modulate antibody Fc-Fcγ interactions with the goal of driving an effective antitumor immune response, including Fc point mutations and glycan modifications. However, robust antibody-Fcγ engagement and immune cell binding of Fc-enhanced antibodies in the periphery can lead to the unwanted induction of systemic cytokine release and other dose-limiting infusion-related reactions. Creating a balance between effective engagement of Fcγ receptors that can induce antitumor activity without incurring systemic immune activation is an ongoing challenge in the field of antibody and immuno-oncology therapeutics. Herein, we describe a method for the reversible chemical modulation of antibody-Fcγ interactions using simple poly(ethylene glycol) (PEG) linkers conjugated to antibody interchain disulfides with maleimide attachments. This method enables dosing of a therapeutic with muted Fcγ engagement that is restored in vivo in a time-dependent manner. The technology was applied to an effector function enhanced agonist CD40 antibody, SEA-CD40, and experiments demonstrate significant reductions in Fc-induced immune activation in vitro and in mice and nonhuman primates despite showing retained efficacy and improved pharmacokinetics compared to the parent antibody. We foresee that this simple, modular system can be rapidly applied to antibodies that suffer from systemic immune activation due to peripheral FcγR binding immediately upon infusion.


Assuntos
Receptores de IgG , Animais , Camundongos , Receptores de IgG/imunologia , Humanos , Polietilenoglicóis/química , Citotoxicidade Celular Dependente de Anticorpos , Fagocitose/efeitos dos fármacos
2.
Toxicol Appl Pharmacol ; 392: 114932, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32109510

RESUMO

Recently, we described a family of non-targeting monomethylauristatin E (MMAE) antibody-drug conjugates (ADCs) whose pharmacokinetics could be tuned through incorporation of a short polyethylene glycol (PEG) moiety of up to twelve units into a drug-linker to render the ADC surface more hydrophilic. That work demonstrated that more hydrophilic ADCs were simultaneously more effective and better tolerated in mouse models, suggesting an improvement in therapeutic index via this strategy. Here, we describe the biodistribution and toxicology assessments in Sprague-Dawley rats after intravenous dosing with the aim of elucidating the relationships between these biological outcomes and the underlying physicochemical properties of non-targeted ADCs. Dosing a non-PEGylated ADC exhibited rapid nonspecific cellular uptake, leading to ADC catabolism and rapid release of the cytotoxic payload which reached peak plasma and tissue concentrations within the first day. Introduction of a PEG chain of four, eight, or twelve units resulted in increasingly slower uptake and decreases in peak payload concentrations in all tissues. These ADCs with minimal non-specific uptake also exhibited substantially less hematologic toxicity, with reduced histologic depletion of bone marrow and less dramatic decreases and/or more rapid recovery in peripheral hematologic cell counts (neutrophils, platelets, and reticulocytes). These results support a strong correlation between ADC hydrophobicity, rate of non-specific uptake, peak tissue concentration of released payload, and resulting toxicology parameters. Should these correlations be translatable to the clinic, this would provide a more general and highly tractable strategy for reducing the antigen-independent toxicity of ADCs through drug-linker design to modulate non-specific biodistribution.


Assuntos
Imunoconjugados/química , Imunoconjugados/farmacocinética , Oligopeptídeos/administração & dosagem , Oligopeptídeos/farmacocinética , Polietilenoglicóis/química , Animais , Feminino , Imunoconjugados/administração & dosagem , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
3.
Mol Pharm ; 17(3): 802-809, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31976667

RESUMO

While antibody-drug conjugates (ADCs) are advancing through clinical testing and receiving new marketing approvals, improvements to the technology continue to be developed in both academic and industrial laboratories. Among the key ADC attributes that can be improved upon with new technology are their biodistribution and pharmacokinetic properties. During the course of ADC development, it has become apparent that conjugation of drugs to the surface of a monoclonal antibody can alter its physicochemical characteristics in a manner that results in increased nonspecific interactions and more rapid elimination from plasma. Researchers in the field have typically relied upon in vivo studies in preclinical models to understand how a particular ADC chemistry will impact these biological characteristics. In previous work, we described how animal studies have revealed a relationship between ADC hydrophobicity, pharmacokinetics, and nonspecific hepatic clearance, particularly by sinusoidal endothelium and Kupffer cells. Here, we describe a fluorescence-based assay using cultured Kupffer cells to recapitulate the nonspecific interactions that lead to ADC clearance in an in vitro setting with the aim of developing a tool for predicting the pharmacokinetics of novel ADC designs. Output from this assay has demonstrated an excellent correlation with plasma clearance for a series of closely related ADCs bearing discrete PEG chains of varying length and has proven useful in interrogating the mechanism of the interactions between ADCs and Kupffer cells.


Assuntos
Desenho de Fármacos , Imunoconjugados/administração & dosagem , Imunoconjugados/farmacocinética , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Animais , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/química , Medula Óssea/metabolismo , Técnicas de Cultura de Células/métodos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunoconjugados/sangue , Imunoconjugados/química , Injeções Intravenosas , Fígado/metabolismo , Taxa de Depuração Metabólica , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície/efeitos dos fármacos , Distribuição Tecidual
4.
Bioorg Med Chem Lett ; 30(14): 127241, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32527543

RESUMO

The tubulysins are an emerging antibody-drug conjugate (ADC) payload that maintain potent anti-proliferative activity against cells that exhibit the multi-drug resistant (MDR) phenotype. These drugs possess a C-11 acetate known to be hydrolytically unstable in plasma, and loss of the acetate significantly attenuates cytotoxicity. Structure-activity relationship studies were undertaken to identify stable C-11 tubulysin analogues that maintain affinity for tubulin and potent cytotoxicity. After identifying several C-11 alkoxy analogues that possess comparable biological activity to tubulysin M with significantly improved plasma stability, additional analogues of both the Ile residue and N-terminal position were synthesized. These studies revealed that minor changes within the tubulin binding site of tubulysin can profoundly alter the activity of this chemotype, particularly against MDR-positive cell types.


Assuntos
Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Oligopeptídeos/farmacologia , Antineoplásicos/sangue , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Oligopeptídeos/sangue , Oligopeptídeos/química , Relação Estrutura-Atividade
5.
Drug Discov Today Technol ; 30: 105-109, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30553514

RESUMO

The antibody-drug conjugate (ADC) field has seen a remarkable expansion in the number of entrants in clinical studies. Many of these agents employ newer conjugation technologies that have been developed over the last decade that confer various attributes to the ADCs prepared with them, including stability, potency, and homogeneity. In many cases, these new ADCs appear demonstrably superior to earlier technologies in preclinical models of activity and toxicology, but the degree to which these improvements will translate to the clinic is only starting to be seen. Many of these technologies are now competing head-to-head by targeting the same antigen in similar patient populations, allowing for a direct comparison of their clinical performance properties. As lessons from these experiences feed back into discovery research, future iterations of ADC design may be expected to bring improved therapeutics into the clinic.


Assuntos
Imunoconjugados/química , Aprovação de Drogas , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos
6.
Circ Res ; 116(8): 1462-1476, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25858069

RESUMO

Cardiac muscle cells have an intrinsic ability to sense and respond to mechanical load through a process known as mechanotransduction. In the heart, this process involves the conversion of mechanical stimuli into biochemical events that induce changes in myocardial structure and function. Mechanotransduction and its downstream effects function initially as adaptive responses that serve as compensatory mechanisms during adaptation to the initial load. However, under prolonged and abnormal loading conditions, the remodeling processes can become maladaptive, leading to altered physiological function and the development of pathological cardiac hypertrophy and heart failure. Although the mechanisms underlying mechanotransduction are far from being fully elucidated, human and mouse genetic studies have highlighted various cytoskeletal and sarcolemmal structures in cardiac myocytes as the likely candidates for load transducers, based on their link to signaling molecules and architectural components important in disease pathogenesis. In this review, we summarize recent developments that have uncovered specific protein complexes linked to mechanotransduction and mechanotransmission within the sarcomere, the intercalated disc, and at the sarcolemma. The protein structures acting as mechanotransducers are the first step in the process that drives physiological and pathological cardiac hypertrophy and remodeling, as well as the transition to heart failure, and may provide better insights into mechanisms driving mechanotransduction-based diseases.


Assuntos
Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Hemodinâmica , Mecanotransdução Celular , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Adaptação Fisiológica , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Complexos Multiproteicos , Proteínas Musculares/genética , Miócitos Cardíacos/patologia
7.
Hum Mol Genet ; 23(5): 1134-50, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24108106

RESUMO

Arrhythmogenic right ventricular cardiomyopathy (ARVC) termed a 'disease of the desmosome' is an inherited cardiomyopathy that recently underwent reclassification owing to the identification of left-dominant and biventricular disease forms. Homozygous loss-of-function mutations in the desmosomal component, desmoplakin, are found in patients exhibiting a biventricular form of ARVC; however, no models recapitulate the postnatal hallmarks of the disease as seen in these patients. To gain insights into the homozygous loss-of-function effects of desmoplakin in the heart, we generated cardiomyocyte-specific desmoplakin-deficient mice (DSP-cKO) using ventricular myosin light chain-2-Cre mice. Homozygous DSP-cKO mice are viable but display early ultrastructural defects in desmosomal integrity leading to a cardiomyopathy reminiscent of a biventricular form of ARVC, which includes cell death and fibro-fatty replacement within the ventricle leading to biventricular dysfunction, failure and premature death. DSP-cKO mice also exhibited ventricular arrhythmias that are exacerbated with exercise and catecholamine stimulation. Furthermore, DSP-cKO hearts exhibited right ventricular conduction defects associated with loss of connexin 40 expression and electrical wavefront propagation defects associated with loss of connexin 43 expression. Dose-dependent assessment of the effects of loss of desmoplakin in neonatal ventricular cardiomyocytes revealed primary loss of connexin 43 levels, phosphorylation and function independent of the molecular dissociation of the mechanical junction complex and fibro-fatty manifestation associated with ARVC, suggesting a role for desmoplakin as a primary stabilizer of connexin integrity. In summary, we provide evidence for a novel mouse model, which is reminiscent of the postnatal onset of ARVC while highlighting mechanisms underlying a biventricular form of human ARVC.


Assuntos
Displasia Arritmogênica Ventricular Direita/genética , Conexinas/deficiência , Animais , Animais Recém-Nascidos , Arritmias Cardíacas/genética , Displasia Arritmogênica Ventricular Direita/diagnóstico , Displasia Arritmogênica Ventricular Direita/mortalidade , Síndrome de Brugada , Doença do Sistema de Condução Cardíaco , Catecolaminas/farmacologia , Conexina 43/deficiência , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Desmoplaquinas/deficiência , Modelos Animais de Doenças , Eletrocardiografia , Expressão Gênica , Coração/efeitos dos fármacos , Sistema de Condução Cardíaco/anormalidades , Imageamento por Ressonância Magnética , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Miocárdio/ultraestrutura , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/ultraestrutura , Fosforilação , Condicionamento Físico Animal/efeitos adversos , Proteína alfa-5 de Junções Comunicantes
8.
Angew Chem Int Ed Engl ; 55(28): 7948-51, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27198854

RESUMO

A strategy for the conjugation of alcohol-containing payloads to antibodies has been developed and involves the methylene alkoxy carbamate (MAC) self-immolative unit. A series of MAC ß-glucuronide model constructs were prepared to evaluate stability and enzymatic release, and the results demonstrated high stability at physiological pH in a substitution-dependent manner. All the MAC model compounds efficiently released alcohol drug surrogates under the action of ß-glucuronidase. To assess the MAC technology for ADCs, the potent microtubule-disrupting agent auristatin E (AE) was incorporated through the norephedrine alcohol. Conjugation of the MAC ß-glucuronide AE drug linker to the anti-CD30 antibody cAC10, and an IgG control antibody, gave potent and immunologically specific activities in vitro and in vivo. These studies validate the MAC self-immolative unit for alcohol-containing payloads within ADCs, a class that has not been widely exploited.


Assuntos
Aminobenzoatos/química , Carbamatos/química , Imunoconjugados/química , Oligopeptídeos/química , Fenilpropanolamina/análogos & derivados , Moduladores de Tubulina/química , Aminobenzoatos/administração & dosagem , Aminobenzoatos/uso terapêutico , Animais , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/uso terapêutico , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Doença de Hodgkin/tratamento farmacológico , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/uso terapêutico , Camundongos , Neoplasias/tratamento farmacológico , Oligopeptídeos/administração & dosagem , Oligopeptídeos/uso terapêutico , Moduladores de Tubulina/administração & dosagem , Moduladores de Tubulina/uso terapêutico
9.
Blood ; 122(8): 1455-63, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23770776

RESUMO

Outcomes in acute myeloid leukemia (AML) remain unsatisfactory, and novel treatments are urgently needed. One strategy explores antibodies and their drug conjugates, particularly those targeting CD33. Emerging data with gemtuzumab ozogamicin (GO) demonstrate target validity and activity in some patients with AML, but efficacy is limited by heterogeneous drug conjugation, linker instability, and a high incidence of multidrug resistance. We describe here the development of SGN-CD33A, a humanized anti-CD33 antibody with engineered cysteines conjugated to a highly potent, synthetic DNA cross-linking pyrrolobenzodiazepine dimer via a protease-cleavable linker. The use of engineered cysteine residues at the sites of drug linker attachment results in a drug loading of approximately 2 pyrrolobenzodiazepine dimers per antibody. In preclinical testing, SGN-CD33A is more potent than GO against a panel of AML cell lines and primary AML cells in vitro and in xenotransplantation studies in mice. Unlike GO, antileukemic activity is observed with SGN-CD33A in AML models with the multidrug-resistant phenotype. Mechanistic studies indicate that the cytotoxic effects of SGN-CD33A involve DNA damage with ensuing cell cycle arrest and apoptotic cell death. Together, these data suggest that SGN-CD33A has CD33-directed antitumor activity and support clinical testing of this novel therapeutic in patients with AML.


Assuntos
Anticorpos Monoclonais Humanizados/química , Benzodiazepinas/química , Resistencia a Medicamentos Antineoplásicos , Imunoconjugados/química , Leucemia Mieloide Aguda/tratamento farmacológico , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/química , Animais , Apoptose , Ciclo Celular , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Cisteína/genética , Dimerização , Desenho de Fármacos , Células HEK293 , Células HL-60 , Humanos , Leucemia Mieloide Aguda/imunologia , Camundongos
10.
J Biol Chem ; 287(35): 29273-84, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22778266

RESUMO

Understanding mechanisms underlying titin regulation in cardiac muscle function is of critical importance given recent compelling evidence that highlight titin mutations as major determinants of human cardiomyopathy. We previously identified a cardiac biomechanical stress-regulated complex at the cardiac-specific N2B region of titin that includes four-and-a-half LIM domain protein-1 (Fhl1) and components of the mitogen-activated protein signaling cascade, which impacted muscle compliance in Fhl1 knock-out cardiac muscle. However, direct regulation of these molecular components in mediating titin N2B function remained unresolved. Here we identify Fhl1 as a novel negative regulator of titin N2B levels and phosphorylation-mediated mechanics. We specifically identify titin N2B as a novel substrate of extracellular signal regulated-kinase-2 (Erk2) and demonstrate that Fhl1 directly interferes with Erk2-mediated titin-N2B phosphorylation. We highlight the critical region in titin-N2B that interacts with Fhl1 and residues that are dependent on Erk2-mediated phosphorylation in situ. We also propose a potential mechanism for a known titin-N2B cardiomyopathy-causing mutation that involves this regulatory complex. These studies shed light on a novel mechanism regulating titin-N2B mechano-signaling as well as suggest that dysfunction of these pathways could be important in cardiac disease states affecting muscle compliance.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/metabolismo , Mecanotransdução Celular , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Proteínas Quinases/metabolismo , Animais , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Conectina , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/genética , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteínas Musculares/genética , Mutação , Miocárdio/patologia , Fosforilação , Proteínas Quinases/genética , Estrutura Terciária de Proteína
11.
Bioconjug Chem ; 24(7): 1256-63, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23808985

RESUMO

A highly cytotoxic DNA cross-linking pyrrolobenzodiazepine (PBD) dimer with a valine-alanine dipeptide linker was conjugated to the anti-CD70 h1F6 mAb either through endogenous interchain cysteines or, site-specifically, through engineered cysteines at position 239 of the heavy chains. The h1F6239C-PBD conjugation strategy proved to be superior to interchain cysteine conjugation, affording an antibody-drug conjugate (ADC) with high uniformity in drug-loading and low levels of aggregation. In vitro cytotoxicity experiments demonstrated that the h1F6239C-PBD was potent and immunologically specific on CD70-positive renal cell carcinoma (RCC) and non-Hodgkin lymphoma (NHL) cell lines. The conjugate was resistant to drug loss in plasma and in circulation, and had a pharmacokinetic profile closely matching that of the parental h1F6239C antibody capped with N-ethylmaleimide (NEM). Evaluation in CD70-positive RCC and NHL mouse xenograft models showed pronounced antitumor activities at single or weekly doses as low as 0.1 mg/kg of ADC. The ADC was tolerated at 2.5 mg/kg. These results demonstrate that PBDs can be effectively used for antibody-targeted therapy.


Assuntos
Benzodiazepinas/química , Ligante CD27/química , Imunoconjugados/farmacologia , Animais , Dimerização , Desenho de Fármacos , Feminino , Meia-Vida , Imunoconjugados/química , Camundongos , Camundongos Endogâmicos BALB C
12.
Mol Cancer Ther ; 22(12): 1444-1453, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619980

RESUMO

Integrin beta-6, a component of the heterodimeric adhesion receptor alpha-v/beta-6, is overexpressed in numerous solid tumors. Its expression has been shown by multiple investigators to be a negative prognostic indicator in diverse cancers including colorectal, non-small cell lung, gastric, and cervical. We developed SGN-B6A as an antibody-drug conjugate (ADC) directed to integrin beta-6 to deliver the clinically validated payload monomethyl auristatin E (MMAE) to cancer cells. The antibody component of SGN-B6A is specific for integrin beta-6 and does not bind other alpha-v family members. In preclinical studies, this ADC has demonstrated activity in vivo in models derived from non-small cell lung, pancreatic, pharyngeal, and bladder carcinomas spanning a range of antigen expression levels. In nonclinical toxicology studies in cynomolgus monkeys, doses of up to 5 mg/kg weekly for four doses or 6 mg/kg every 3 weeks for two doses were tolerated. Hematologic toxicities typical of MMAE ADCs were dose limiting, and no significant target-mediated toxicity was observed. A phase I first-in-human study is in progress to evaluate the safety and antitumor activity of SGN-B6A in a variety of solid tumors known to express integrin beta-6 (NCT04389632).


Assuntos
Antineoplásicos , Carcinoma , Imunoconjugados , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Prognóstico , Integrinas , Linhagem Celular Tumoral
13.
Circ Res ; 106(5): 880-90, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20093627

RESUMO

RATIONALE: The intercalated disc (ID) is a highly specialized cell-cell contact structure that ensures mechanical and electric coupling of contracting cardiomyocytes. Recently, the ID has been recognized to be a hot spot of cardiac disease, in particular inherited cardiomyopathy. OBJECTIVE: Given its complex structure and function we hypothesized that important molecular constituents of the ID still remain unknown. METHODS AND RESULTS: Using a bioinformatics screen, we discovered and cloned a previously uncharacterized 54 kDa cardiac protein which we termed Myozap (Myocardium-enriched zonula occludens-1-associated protein). Myozap is strongly expressed in the heart and lung. In cardiac tissue it localized to the ID and directly binds to desmoplakin and zonula occludens-1. In a yeast 2-hybrid screen for additional binding partners of Myozap we identified myosin phosphatase-RhoA interacting protein (MRIP), a negative regulator of Rho activity. Myozap, in turn, strongly activates SRF-dependent transcription through its ERM (Ezrin/radixin/moesin)-like domain in a Rho-dependent fashion. Finally, in vivo knockdown of the Myozap ortholog in zebrafish led to severe contractile dysfunction and cardiomyopathy. CONCLUSIONS: Taken together, these findings reveal Myozap as a previously unrecognized component of a Rho-dependent signaling pathway that links the intercalated disc to cardiac gene regulation. Moreover, its subcellular localization and the observation of a severe cardiac phenotype in zebrafish, implicate Myozap in the pathogenesis of cardiomyopathy.


Assuntos
Cardiomiopatias/metabolismo , Proteínas Musculares/metabolismo , Contração Miocárdica , Miocárdio/metabolismo , Fator de Resposta Sérica/metabolismo , Transdução de Sinais , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Bovinos , Chlorocebus aethiops , Clonagem Molecular , Biologia Computacional , Desmoplaquinas/metabolismo , Cães , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Dados de Sequência Molecular , Proteínas Musculares/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Peixe-Zebra , Proteína da Zônula de Oclusão-1 , Proteínas rho de Ligação ao GTP/metabolismo
14.
Adv Radiat Oncol ; 7(3): 100890, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35647396

RESUMO

Purpose: Some patients with breast cancer treated by surgery and radiation therapy experience clinically significant toxicity, which may adversely affect cosmesis and quality of life. There is a paucity of validated clinical prediction models for radiation toxicity. We used machine learning (ML) algorithms to develop and optimise a clinical prediction model for acute breast desquamation after whole breast external beam radiation therapy in the prospective multicenter REQUITE cohort study. Methods and Materials: Using demographic and treatment-related features (m = 122) from patients (n = 2058) at 26 centers, we trained 8 ML algorithms with 10-fold cross-validation in a 50:50 random-split data set with class stratification to predict acute breast desquamation. Based on performance in the validation data set, the logistic model tree, random forest, and naïve Bayes models were taken forward to cost-sensitive learning optimisation. Results: One hundred and ninety-two patients experienced acute desquamation. Resampling and cost-sensitive learning optimisation facilitated an improvement in classification performance. Based on maximising sensitivity (true positives), the "hero" model was the cost-sensitive random forest algorithm with a false-negative: false-positive misclassification penalty of 90:1 containing m = 114 predictive features. Model sensitivity and specificity were 0.77 and 0.66, respectively, with an area under the curve of 0.77 in the validation cohort. Conclusions: ML algorithms with resampling and cost-sensitive learning generated clinically valid prediction models for acute desquamation using patient demographic and treatment features. Further external validation and inclusion of genomic markers in ML prediction models are worthwhile, to identify patients at increased risk of toxicity who may benefit from supportive intervention or even a change in treatment plan.

15.
J Transl Med ; 9: 159, 2011 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-21943159

RESUMO

BACKGROUND: Acute pulmonary embolism (APE) remains a diagnostic challenge due to a variable clinical presentation and the lack of a reliable screening tool. MicroRNAs (miRNAs) regulate gene expression in a wide range of pathophysiologic processes. Circulating miRNAs are emerging biomarkers in heart failure, type 2 diabetes and other disease states; however, using plasma miRNAs as biomarkers for the diagnosis of APE is still unknown. METHODS: Thirty-two APE patients, 32 healthy controls, and 22 non-APE patients (reported dyspnea, chest pain, or cough) were enrolled in this study. The TaqMan miRNA microarray was used to identify dysregulated miRNAs in the plasma of APE patients. The TaqMan-based miRNA quantitative real-time reverse transcription polymerase chain reactions were used to validate the dysregulated miRNAs. The receiver-operator characteristic (ROC) curve analysis was conducted to evaluate the diagnostic accuracy of the miRNA identified as the candidate biomarker. RESULTS: Plasma miRNA-134 (miR-134) level was significantly higher in the APE patients than in the healthy controls or non-APE patients. The ROC curve showed that plasma miR-134 was a specific diagnostic predictor of APE with an area under the curve of 0.833 (95% confidence interval, 0.737 to 0.929; P < 0.001). CONCLUSIONS: Our findings indicated that plasma miR-134 could be an important biomarker for the diagnosis of APE. Because of this finding, large-scale investigations are urgently needed to pave the way from basic research to clinical utilization.


Assuntos
MicroRNAs/sangue , Embolia Pulmonar/sangue , Embolia Pulmonar/diagnóstico , Doença Aguda , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Curva ROC , Reprodutibilidade dos Testes , Fatores de Risco
16.
J Clin Invest ; 131(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33857019

RESUMO

Dysregulated protein degradative pathways are increasingly recognized as mediators of human disease. This mechanism may have particular relevance to desmosomal proteins that play critical structural roles in both tissue architecture and cell-cell communication, as destabilization/breakdown of the desmosomal proteome is a hallmark of genetic-based desmosomal-targeted diseases, such as the cardiac disease arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C). However, no information exists on whether there are resident proteins that regulate desmosomal proteome homeostasis. Here, we uncovered a cardiac constitutive photomorphogenesis 9 (COP9) desmosomal resident protein complex, composed of subunit 6 of the COP9 signalosome (CSN6), that enzymatically restricted neddylation and targeted desmosomal proteome degradation. CSN6 binding, localization, levels, and function were affected in hearts of classic mouse and human models of ARVD/C affected by desmosomal loss and mutations, respectively. Loss of desmosomal proteome degradation control due to junctional reduction/loss of CSN6 and human desmosomal mutations destabilizing junctional CSN6 were also sufficient to trigger ARVD/C in mice. We identified a desmosomal resident regulatory complex that restricted desmosomal proteome degradation and disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Displasia Arritmogênica Ventricular Direita/metabolismo , Complexo do Signalossomo COP9/metabolismo , Desmossomos/metabolismo , Proteólise , Proteoma/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Displasia Arritmogênica Ventricular Direita/genética , Complexo do Signalossomo COP9/genética , Desmossomos/genética , Desmossomos/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteoma/genética
17.
ChemMedChem ; 16(7): 1077-1081, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33369163

RESUMO

Tubulysins have emerged in recent years as a compelling drug class for delivery to tumor cells via antibodies. The ability of this drug class to exert bystander activity while retaining potency against multidrug-resistant cell lines differentiates them from other microtubule-disrupting agents. Tubulysin M, a synthetic analogue, has proven to be active and well tolerated as an antibody-drug conjugate (ADC) payload, but has the liability of being susceptible to acetate hydrolysis at the C11 position, leading to attenuated potency. In this work, we examine the ability of the drug-linker and conjugation site to preserve acetate stability. Our findings show that, in contrast to a more conventional protease-cleavable dipeptide linker, the ß-glucuronidase-cleavable glucuronide linker protects against acetate hydrolysis and improves ADC activity in vivo. In addition, site-specific conjugation can positively impact both acetate stability and in vivo activity. Together, these findings provide the basis for a highly optimized delivery strategy for tubulysin M.


Assuntos
Imunoconjugados/química , Oligopeptídeos/química , Animais , Humanos , Imunoconjugados/uso terapêutico , Camundongos , Estrutura Molecular , Oligopeptídeos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Mol Cancer Ther ; 20(2): 320-328, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33288628

RESUMO

Auristatins, a class of clinically validated anti-tubulin agents utilized as payloads in antibody-drug conjugates, are generally classified by their membrane permeability and the extent of cytotoxic bystander activity on neighboring cells after targeted delivery. The drugs typically fall within two categories: membrane permeable monomethyl auristatin E-type molecules with high bystander activities and susceptibility to efflux pumps, or charged and less permeable monomethyl auristatin F (MMAF) analogs with low bystander activities and resistance to efflux pumps. Herein, we report the development of novel auristatins that combine the attributes of each class by having both bystander activity and cytotoxicity on multidrug-resistant (MDR+) cell lines. Structure-based design focused on the hydrophobic functionalization of the N-terminal N-methylvaline of the MMAF scaffold to increase cell permeability. The resulting structure-activity relationships of the new auristatins demonstrate that optimization of hydrophobicity and structure can lead to highly active free drugs and antibody-drug conjugates with in vivo bystander activities.


Assuntos
Aminobenzoatos/uso terapêutico , Oligopeptídeos/uso terapêutico , Aminobenzoatos/farmacologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Oligopeptídeos/farmacologia , Ratos , Relação Estrutura-Atividade
19.
Comput Biol Med ; 135: 104624, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34247131

RESUMO

The prediction by classification of side effects incidence in a given medical treatment is a common challenge in medical research. Machine Learning (ML) methods are widely used in the areas of risk prediction and classification. The primary objective of such algorithms is to use several features to predict dichotomous responses (e.g., disease positive/negative). Similar to statistical inference modelling, ML modelling is subject to the class imbalance problem and is affected by the majority class, increasing the false-negative rate. In this study, seventy-nine ML models were built and evaluated to classify approximately 2000 participants from 26 hospitals in eight different countries into two groups of radiotherapy (RT) side effects incidence based on recorded observations from the international study of RT related toxicity "REQUITE". We also examined the effect of sampling techniques and cost-sensitive learning methods on the models when dealing with class imbalance. The combinations of such techniques used had a significant impact on the classification. They resulted in an improvement in incidence status prediction by shifting classifiers' attention to the minority group. The best classification model for RT acute toxicity prediction was identified based on domain experts' success criteria. The Area Under Receiver Operator Characteristic curve of the models tested with an isolated dataset ranged from 0.50 to 0.77. The scale of improved results is promising and will guide further development of models to predict RT acute toxicities. One model was optimised and found to be beneficial to identify patients who are at risk of developing acute RT early-stage toxicities as a result of undergoing breast RT ensuring relevant treatment interventions can be appropriately targeted. The design of the approach presented in this paper resulted in producing a preclinical-valid prediction model. The study was developed by a multi-disciplinary collaboration of data scientists, medical physicists, oncologists and surgeons in the UK Radiotherapy Machine Learning Network.


Assuntos
Ciência de Dados , Aprendizado de Máquina , Algoritmos , Humanos , Modelos Estatísticos
20.
J Mol Cell Cardiol ; 48(3): 461-7, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19751740

RESUMO

Atrial fibrosis has been strongly associated with the presence of heart diseases/arrhythmias, including congestive heart failure (CHF) and atrial fibrillation (AF). Inducibility of AF as a result of atrial fibrosis has been the subject of intense recent investigation since it is the most commonly encountered arrhythmia in adults and can substantially increase the risk of premature death. Rhythm and rate control drugs as well as surgical interventions are used as therapies for AF; however, increased attention has been diverted to mineralocorticoid receptor (MR) antagonists including spironolactone as potential therapies for human AF because of their positive effects on reducing atrial fibrosis and associated AF in animal models. Spironolactone has been shown to exert positive effects in human patients with heart failure; however, the mechanisms and effects in human atrial fibrosis and AF remain undetermined. This review will discuss and highlight developments on (i) the relationship between atrial fibrosis and AF, (ii) spironolactone, as a drug targeted to atrial fibrosis and AF, as well as (iii) the distinct and common mechanisms important for regulating atrial and ventricular fibrosis, inclusive of the key extracellular matrix regulatory proteins involved.


Assuntos
Fibrilação Atrial/metabolismo , Matriz Extracelular/metabolismo , Fibrose/metabolismo , Átrios do Coração/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Animais , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/fisiopatologia , Fibrose/tratamento farmacológico , Fibrose/fisiopatologia , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Humanos , Transdução de Sinais/efeitos dos fármacos , Espironolactona/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA