Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Comput Neurosci ; 51(4): 433-444, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37624481

RESUMO

The comparison of odor functional maps in rodents demonstrates a high degree of inter-individual variability in glomerular activity patterns. There are substantial methodological difficulties in the interindividual assessment of local permutations in the glomerular patterns, since the position of anatomical extracranial landmarks, as well as the size, shape and angular orientation of olfactory bulbs can vary significantly. A new method for defining anatomical coordinates of active glomeruli in the rat olfactory bulb has been developed. The method compares the interindividual odor functional maps and calculates probabilistic maps of glomerular activity with adjustment. This adjustment involves rotation, scaling and shift of the functional map relative to its expected position in probabilistic map, computed according to the anatomical coordinates. The calculation of the probabilistic map of the odorant-specific response compensates for potential anatoamical errors due to individual variability in olfactory bulb dimensions and angular orientation. We show its efficiency on real data from a large animal sample recorded by two-photon calcium imaging in dorsal surface of the rat olfactory bulb. The proposed method with probabilistic map calculation enables the spatial consistency of the effects of individual odorants in different rats to be assessed and allow stereotypical positions of odor-specific clusters in the glomerular layer of the olfactory bulb to be identified.


Assuntos
Odorantes , Bulbo Olfatório , Ratos , Animais , Bulbo Olfatório/fisiologia , Modelos Neurológicos , Cálcio
2.
Cereb Cortex ; 28(9): 3255-3266, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28981594

RESUMO

A delicate interneuronal communication between pre- and postsynaptic membranes is critical for synaptic plasticity and the formation of memory. Evidence shows that membrane/lipid rafts (MLRs), plasma membrane microdomains enriched in cholesterol and sphingolipids, organize presynaptic proteins and postsynaptic receptors necessary for synaptic formation and signaling. MLRs establish a cell polarity that facilitates transduction of extracellular cues to the intracellular environment. Here we show that neuron-targeted overexpression of an MLR protein, caveolin-1 (SynCav1), in the adult mouse hippocampus increased the number of presynaptic vesicles per bouton, total excitatory type I glutamatergic synapses, number of same-dendrite multiple-synapse boutons, increased myelination, increased long-term potentiation, and increased MLR-localized N-methyl-d-aspartate receptor subunits (GluN1, GluN2A, and GluN2B). Immunogold electron microscopy revealed that Cav-1 localizes to both the pre- and postsynaptic membrane regions as well as in the synaptic cleft. These findings, which are consistent with a significant increase in ultrastructural and functional synaptic plasticity, provide a fundamental framework that underlies previously demonstrated improvements in learning and memory in adult and aged mice by SynCav1. Such observations suggest that Cav-1 and MLRs alter basic aspects of synapse biology that could serve as potential therapeutic targets to promote neuroplasticity and combat neurodegeneration in a number of neurological disorders.


Assuntos
Caveolina 1/metabolismo , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL
3.
Neurobiol Dis ; 115: 1-8, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29550538

RESUMO

Down syndrome (DS) is the most frequent genetic cause of developmental abnormalities leading to intellectual disability. One notable phenomenon affecting the formation of nascent neural circuits during late developmental periods is developmental switch of GABA action from depolarizing to hyperpolarizing mode. We examined properties of this switch in DS using primary cultures and acute hippocampal slices from Ts65Dn mice, a genetic model of DS. Cultures of DIV3-DIV13 Ts65Dn and control normosomic (2 N) neurons were loaded with FURA-2 AM, and GABA action was assessed using local applications. In 2 N cultures, the number of GABA-activated cells dropped from ~100% to 20% between postnatal days 3-13 (P3-P13) reflecting the switch in GABA action polarity. In Ts65Dn cultures, the timing of this switch was delayed by 2-3 days. Next, microelectrode recordings of multi-unit activity (MUA) were performed in CA3 slices during bath application of the GABAA agonist isoguvacine. MUA frequency was increased in P8-P12 and reduced in P14-P22 slices reflecting the switch of GABA action from excitatory to inhibitory mode. The timing of this switch was delayed in Ts65Dn by approximately 2 days. Finally, frequency of giant depolarizing potentials (GDPs), a form of primordial neural activity, was significantly increased in slices from Ts65Dn pups at P12 and P14. These experimental evidences show that GABA action polarity switch is delayed in Ts65Dn model of DS, and that these changes lead to a delay in maturation of nascent neural circuits. These alterations may affect properties of neural circuits in adult animals and, therefore, represent a prospective target for pharmacotherapy of cognitive impairment in DS.


Assuntos
Potenciais de Ação/fisiologia , Síndrome de Down/genética , Modelos Genéticos , Inibição Neural/fisiologia , Ácido gama-Aminobutírico/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Células Cultivadas , Síndrome de Down/fisiopatologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Ácido gama-Aminobutírico/farmacologia
4.
Neurobiol Dis ; 103: 1-10, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28342823

RESUMO

Down syndrome (DS), trisomy 21, is caused by increased dose of genes present on human chromosome 21 (HSA21). The gene-dose hypothesis argues that a change in the dose of individual genes or regulatory sequences on HSA21 is necessary for creating DS-related phenotypes, including cognitive impairment. We focused on a possible role for Kcnj6, the gene encoding Kir3.2 (Girk2) subunits of a G-protein-coupled inwardly-rectifying potassium channel. This gene resides on a segment of mouse Chromosome 16 that is present in one extra copy in the genome of the Ts65Dn mouse, a well-studied genetic model of DS. Kir3.2 subunit-containing potassium channels serve as effectors for a number of postsynaptic metabotropic receptors including GABAB receptors. Several studies raise the possibility that increased Kcnj6 dose contributes to synaptic and cognitive abnormalities in DS. To assess directly a role for Kcnj6 gene dose in cognitive deficits in DS, we produced Ts65Dn mice that harbor only 2 copies of Kcnj6 (Ts65Dn:Kcnj6++- mice). The reduction in Kcnj6 gene dose restored to normal the hippocampal level of Kir3.2. Long-term memory, examined in the novel object recognition test with the retention period of 24h, was improved to the level observed in the normosomic littermate control mice (2N:Kcnj6++). Significantly, both short-term and long-term potentiation (STP and LTP) was improved to control levels in the dentate gyrus (DG) of the Ts65Dn:Kcnj6++- mouse. In view of the ability of fluoxetine to suppress Kir3.2 channels, we asked if fluoxetine-treated DG slices of Ts65Dn:Kcnj6+++ mice would rescue synaptic plasticity. Fluoxetine increased STP and LTP to control levels. These results are evidence that increased Kcnj6 gene dose is necessary for synaptic and cognitive dysfunction in the Ts65Dn mouse model of DS. Strategies aimed at pharmacologically reducing channel function should be explored for enhancing cognition in DS.


Assuntos
Giro Denteado/metabolismo , Síndrome de Down/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/biossíntese , Dosagem de Genes/fisiologia , Locomoção/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Giro Denteado/patologia , Modelos Animais de Doenças , Síndrome de Down/genética , Síndrome de Down/patologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos
5.
J Neuroinflammation ; 13(1): 283, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27809864

RESUMO

BACKGROUND: Maintaining pH levels within the physiological norm is an important component of brain homeostasis. However, in some pathological or physiological conditions, the capacity of the pH regulatory system could be overpowered by various factors resulting in a transient or permanent alteration in pH levels. Such changes are often observed in pathological conditions associated with neuroinflammation. We hypothesized that neuroinflammation itself is a factor affecting pH levels in neural tissue. To assess this hypothesis, we examined the effects of acute LPS-induced neuroinflammation on intra- and extracellular pH (pHi and pHo) levels in the CA1 region of mouse hippocampus. METHODS: Acute neuroinflammation was induced using two approaches: (1) in vivo by i.p. injections of LPS (5 mg/kg) and (2) in vitro by incubating hippocampal slices of naïve animals in the LPS-containing media (1 µg/mL, 1 h at 35 °C). Standard techniques were used to prepare hippocampal slices. pHi was measured using ratiometric pH-sensitive fluorescent dye BCECF-AM. pHo was assessed using calibrated pH-sensitive micropipettes. The presence of neuroinflammation was verified with immunohistochemistry (IL-1ß and Iba1) and ELISA (IL-1ß and TNF-α). RESULTS: A significant reduction of pHi was observed in the slices of the LPS-injected 3-month-old (LPS 7.13 ± 0.03; Sal 7.22 ± 0.03; p = 0.043, r = 0.43) and 19-month-old (LPS 6.78 ± 0.08; Sal 7.13 ± 0.03; p = 0.0001, r = 0.32) mice. In contrast, the levels of pHo within the slice, measured in 19-month-old animals, were not affected (LPS 7.27 ± 0.02; Sal 7.26 ± 0.02; p = 0.6, r = 0.13). A reduction of pHi was also observed in the LPS-treated slices during the interval 3.5-7 h after the LPS exposure (LPS 6.92 ± 0.07; Veh 7.28 ± 0.05; p = 0.0001, r = 0.46). CONCLUSIONS: Acute LPS-induced neuroinflammation results in a significant intracellular acidification of the CA1 neurons in mouse hippocampus, while the pHo remains largely unchanged. Such changes may represent a specific protective reaction of neural tissue in unfavorable external conditions or be a part of the pathological process.


Assuntos
Encefalite/patologia , Líquido Extracelular/fisiologia , Hipocampo/patologia , Líquido Intracelular/fisiologia , Fatores Etários , Animais , Modelos Animais de Doenças , Encefalite/induzido quimicamente , Ensaio de Imunoadsorção Enzimática , Líquido Extracelular/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Técnicas In Vitro , Interleucina-1beta/metabolismo , Líquido Intracelular/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
6.
Heliyon ; 10(1): e20173, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38173493

RESUMO

Detection of volatile organic compounds in exhaled air is a promising approach to non-invasive and scalable gastric cancer screening. This work proposes a new approach for the detection of volatile organic compounds by analyzing odor-evoked calcium responses in the rat olfactory bulb. We estimate the feasibility of gastric cancer biomarker detection added to the exhaled air of healthy participants. Our detector consists of a convolutional encoder and a similarity-based classifier over encoder outputs. To minimize overfitting on a small available training set, we involve a pre-training where the encoder is trained on synthetic data representing spatiotemporal patterns similar to real calcium responses in the olfactory bulb. We estimate the classification accuracy of exhaled air samples by matching their encodings with encodings of calibration samples of two classes: 1) exhaled air and 2) a mixture of exhaled air with the cancer biomarker. On our data, the accuracy increased from 0.68 on real data up to 0.74 if pre-training on synthetic data is involved. Our work is focused on proving the feasibility of proposed new approach rather than on comparing its efficiency with existing methods. Such detection is often performed with an electronic nose, but its output becomes unstable over time due to a sensor drift. In contrast to the electronic nose, rats can robustly detect low concentrations of biomarkers over lifetime. The feasibility of gastric cancer biomarker detection in exhaled air by bio-hybrid system is shown. Pre-training of neural models for images analysis increases the accuracy of detection.

7.
J Neurosci Methods ; 405: 110097, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38408525

RESUMO

BACKGROUND: Two-photon calcium imaging is widely used to study the odor-evoked glomerular activity in the dorsal olfactory bulb of macrosmatic animals. The nonstationary character of activated patterns sets a limit on the use of a traditional image processing approaches. NEW METHOD: The developed method makes it possible to automatically map cancer biomarkers-activated glomeruli in the rat dorsal olfactory bulb. We interpolated fluorescence intensity of calcium dynamics based on the Gaussian RBF network and synthesized the physiological fluorescence model of the receptive glomerular field. RESULTS: The experiments on 5 rats confirmed the correctness of the developed approach. Patterns evoked by the 6-methyl-5-hepten-2-one (stomach cancer biomarker) and benzene (lung cancer biomarker) were correctly identified. COMPARISON WITH EXISTING METHODS: The proposed method was compared with the nonnegative matrix factorization method and with the method based on computer vision algorithms. The developed approach showed better accuracy in experiments and provided the mathematical models of the odor-evoked patterns synthesis. These models can be used to generate synthetic images of odor-evoked glomerular activity and thus to overcome the problem of small experimental data collected in calcium imaging. CONCLUSIONS: The proposed method should be considered part of the toolkit for fully automatic analysis of calcium imaging-based studies. Currently available methodology is not able to use breath biomarkers to reliably discriminate between cancer patients and healthy controls. Nevertheless, the effective identification of the spatial patterns of cancer biomarkers-evoked glomerular activity can serve as the foundation for highly sensitive biohybrid systems for cancer screening.


Assuntos
Cálcio , Neoplasias , Ratos , Animais , Humanos , Biomarcadores Tumorais , Odorantes , Bulbo Olfatório/fisiologia , Olfato/fisiologia
8.
PLoS One ; 10(7): e0134861, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26230397

RESUMO

Down syndrome (DS), trisomy for chromosome 21, is the most common genetic cause of intellectual disability. The genomic regions on human chromosome 21 (HSA21) are syntenically conserved with regions on mouse chromosomes 10, 16, and 17 (Mmu10, Mmu16, and Mmu17). Recently, we created a genetic model of DS which carries engineered duplications of all three mouse syntenic regions homologous to HSA21. This 'triple trisomic' or TTS model thus represents the most complete and accurate murine model currently available for experimental studies of genotype-phenotype relationships in DS. Here we extended our initial studies of TTS mice. Locomotor activity, stereotypic and repetitive behavior, anxiety, working memory, long-term memory, and synaptic plasticity in the dentate gyrus were examined in the TTS and wild-type (WT) control mice. Changes in locomotor activity were most remarkable for a significant increase in ambulatory time and a reduction in average velocity of TTS mice. No changes were detected in repetitive and stereotypic behavior and in measures of anxiety. Working memory showed no changes when tested in Y-maze, but deficiency in a more challenging T-maze test was detected. Furthermore, long-term object recognition memory was significantly reduced in the TTS mice. These changes were accompanied by deficient long-term potentiation in the dentate gyrus, which was restored to the WT levels following blockade of GABAA receptors with picrotoxin (100 µM). TTS mice thus demonstrated a number of phenotypes characteristic of DS and may serve as a new standard by which to evaluate and direct findings in other less complete models of DS.


Assuntos
Síndrome de Down/psicologia , Fenótipo , Trissomia , Animais , Comportamento Animal , Modelos Animais de Doenças , Síndrome de Down/fisiopatologia , Locomoção , Camundongos
9.
PLoS One ; 9(12): e114521, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25474204

RESUMO

Genetic alterations or pharmacological treatments affecting endocannabinoid signaling have profound effects on synaptic and neuronal properties and, under certain conditions, may improve higher brain functions. Down syndrome (DS), a developmental disorder caused by triplication of chromosome 21, is characterized by deficient cognition and inevitable development of the Alzheimer disease (AD) type pathology during aging. Here we used JZL184, a selective inhibitor of monoacylglycerol lipase (MAGL), to examine the effects of chronic MAGL inhibition on the behavioral, biochemical, and synaptic properties of aged Ts65Dn mice, a genetic model of DS. In both Ts65Dn mice and their normosomic (2N) controls, JZL184-treatment increased brain levels of 2-arachidonoylglycerol (2-AG) and decreased levels of its metabolites such as arachidonic acid, prostaglandins PGD2, PGE2, PGFα, and PGJ2. Enhanced spontaneous locomotor activity of Ts65Dn mice was reduced by the JZL184-treatement to the levels observed in 2N animals. Deficient long-term memory was also improved, while short-term and working types of memory were unaffected. Furthermore, reduced hippocampal long-term potentiation (LTP) was increased in the JZL184-treated Ts65Dn mice to the levels observed in 2N mice. Interestingly, changes in synaptic plasticity and behavior were not observed in the JZL184-treated 2N mice suggesting that the treatment specifically attenuated the defects in the trisomic animals. The JZL184-treatment also reduced the levels of Aß40 and Aß42, but had no effect on the levels of full length APP and BACE1 in both Ts65Dn and 2N mice. These data show that chronic MAGL inhibition improves the behavior and brain functions in a DS model suggesting that pharmacological targeting of MAGL may be considered as a perspective new approach for improving cognition in DS.


Assuntos
Ansiolíticos/uso terapêutico , Benzodioxóis/uso terapêutico , Síndrome de Down/tratamento farmacológico , Piperidinas/uso terapêutico , Animais , Ansiolíticos/farmacologia , Benzodioxóis/farmacologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Modelos Animais de Doenças , Síndrome de Down/psicologia , Avaliação Pré-Clínica de Medicamentos , Endocanabinoides/metabolismo , Masculino , Aprendizagem em Labirinto , Memória de Curto Prazo/efeitos dos fármacos , Camundongos Transgênicos , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Atividade Motora/efeitos dos fármacos , Piperidinas/farmacologia , Reconhecimento Psicológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA