Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biol Chem ; 294(14): 5666-5676, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30760524

RESUMO

Atg101 is an autophagy-related gene identified in worms, flies, mice, and mammals, which encodes a protein that functions in autophagosome formation by associating with the ULK1-Atg13-Fip200 complex. In the last few years, the critical role of Atg101 in autophagy has been well-established through biochemical studies and the determination of its protein structure. However, Atg101's physiological role, both during development and in adulthood, remains less understood. Here, we describe the generation and characterization of an Atg101 loss-of-function mutant in Drosophila and report on the roles of Atg101 in maintaining tissue homeostasis in both adult brains and midguts. We observed that homozygous or hemizygous Atg101 mutants were semi-lethal, with only some of them surviving into adulthood. Both developmental and starvation-induced autophagy processes were defective in the Atg101 mutant animals, and Atg101 mutant adult flies had a significantly shorter lifespan and displayed a mobility defect. Moreover, we observed the accumulation of ubiquitin-positive aggregates in Atg101 mutant brains, indicating a neuronal defect. Interestingly, Atg101 mutant adult midguts were shorter and thicker and exhibited abnormal morphology with enlarged enterocytes. Detailed analysis also revealed that the differentiation from intestinal stem cells to enterocytes was impaired in these midguts. Cell type-specific rescue experiments disclosed that Atg101 had a function in enterocytes and limited their growth. In summary, the results of our study indicate that Drosophila Atg101 is essential for tissue homeostasis in both adult brains and midguts. We propose that Atg101 may have a role in age-related processes.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Drosophila/metabolismo , Enterócitos/metabolismo , Homeostase , Intestinos , Longevidade , Neurônios/metabolismo , Animais , Proteínas Relacionadas à Autofagia/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Mutação com Perda de Função
2.
RNA Biol ; 17(9): 1277-1283, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397794

RESUMO

Maintenance of motor neuron structure and function is crucial in development and motor behaviour. However, the genetic regulatory mechanism of motor neuron function remains less well understood. In the present study, we identify a novel neuroprotective role of the microRNA miR-969 in Drosophila motor neurons. miR-969 is highly expressed in motor neurons. Loss of miR-969 results in early-onset and age-progressive locomotion impairment. Flies lacking miR-969 also exhibit shortened lifespan. Moreover, miR-969 is required in motor neurons. We further identify kay as a functionally important target of miR-969. Together, our results indicate that miR-969 can protect motor neuron function by limiting kay activity in Drosophila.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Neurônios Motores/metabolismo , Fatores de Transcrição/metabolismo , Regiões 3' não Traduzidas , Animais , Sobrevivência Celular/genética , Drosophila/genética , Imunofluorescência , Modelos Biológicos , Mutação , Interferência de RNA , RNA Mensageiro/genética
3.
Biochem J ; 476(4): 759-768, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30733258

RESUMO

Control of organ size is a fundamental aspect in biology and plays important roles in development. The Hippo pathway is a conserved signaling cascade that controls tissue and organ size through the regulation of cell proliferation and apoptosis. Here, we report on the roles of Hcf (host cell factor), the Drosophila homolog of Host cell factor 1, in regulating the Hippo signaling pathway. Loss-of-Hcf function causes tissue undergrowth and the down-regulation of Hippo target gene expression. Genetic analysis reveals that Hcf is required for Hippo pathway-mediated overgrowth. Mechanistically, we show that Hcf associates with the histone H3 lysine-4 methyltransferase Trithorax-related (Trr) to maintain H3K4 mono- and trimethylation. Thus, we conclude that Hcf positively regulates Hippo pathway activity through forming a complex with Trr and controlling H3K4 methylation.


Assuntos
Proteínas de Drosophila/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Metilação , Proteínas Serina-Treonina Quinases/genética
4.
Theranostics ; 14(11): 4462-4480, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113806

RESUMO

Rationale: Cardiomyocytes (CMs) undergo dramatic structural and functional changes in postnatal maturation; however, the regulatory mechanisms remain greatly unclear. Cypher/Z-band alternatively spliced PDZ-motif protein (ZASP) is an essential sarcomere component maintaining Z-disc stability. Deletion of mouse Cypher and mutation in human ZASP result in dilated cardiomyopathy (DCM). Whether Cypher/ZASP participates in CM maturation and thereby affects cardiac function has not been answered. Methods: Immunofluorescence, transmission electron microscopy, real-time quantitative PCR, and Western blot were utilized to identify the role of Cypher in CM maturation. Subsequently, RNA sequencing and bioinformatics analysis predicted serum response factor (SRF) as the key regulator. Rescue experiments were conducted using adenovirus or adeno-associated viruses encoding SRF, both in vitro and in vivo. The molecular mechanisms were elucidated through G-actin/F-actin fractionation, nuclear-cytoplasmic extraction, actin disassembly assays, and co-sedimentation assays. Results: Cypher deletion led to impaired sarcomere isoform switch and morphological abnormalities in mitochondria, transverse-tubules, and intercalated discs. RNA-sequencing analysis revealed significant dysregulation of crucial genes related to sarcomere assembly, mitochondrial metabolism, and electrophysiology in the absence of Cypher. Furthermore, SRF was predicted as key transcription factor mediating the transcriptional differences. Subsequent rescue experiments showed that SRF re-expression during the critical postnatal period effectively rectified CM maturation defects and notably improved cardiac function in Cypher-depleted mice. Mechanistically, Cypher deficiency resulted in the destabilization of F-actin and a notable increase in G-actin levels, thereby impeding the nuclear localisation of myocardin-related transcription factor A (MRTFA) and subsequently initiating SRF transcription. Conclusion: Cypher/ZASP plays a crucial role in CM maturation through actin-mediated MRTFA-SRF signalling. The linkage between CM maturation abnormalities and the late-onset of DCM is suggested, providing further insights into the pathogenesis of DCM and potential treatment strategies.


Assuntos
Actinas , Cardiomiopatia Dilatada , Miócitos Cardíacos , Fator de Resposta Sérica , Transdução de Sinais , Transativadores , Animais , Miócitos Cardíacos/metabolismo , Fator de Resposta Sérica/metabolismo , Fator de Resposta Sérica/genética , Camundongos , Actinas/metabolismo , Transativadores/metabolismo , Transativadores/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Sarcômeros/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Humanos , Camundongos Knockout
5.
Nat Commun ; 13(1): 2817, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595807

RESUMO

Adult progenitor cells in the trachea of Drosophila larvae are activated and migrate out of niches when metamorphosis induces tracheal remodeling. Here we show that in response to metabolic deficiency in decaying tracheal branches, signaling by the insulin pathway controls the progenitor cells by regulating Yorkie (Yki)-dependent proliferation and migration. Yki, a transcription coactivator that is regulated by Hippo signaling, promotes transcriptional activation of cell cycle regulators and components of the extracellular matrix in tracheal progenitor cells. These findings reveal that regulation of Yki signaling by the insulin pathway governs proliferation and migration of tracheal progenitor cells, thereby identifying the regulatory mechanism by which metabolic depression drives progenitor cell activation and cell division that underlies tracheal remodeling.


Assuntos
Proteínas de Drosophila , Insulinas , Animais , Proliferação de Células , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Insulinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases , Células-Tronco/metabolismo , Traqueia/metabolismo , Transativadores/metabolismo
6.
Cell Death Differ ; 28(2): 764-779, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32913227

RESUMO

Increasing evidence suggests that miRNAs play important regulatory roles in the nervous system. However, the molecular mechanisms of how specific miRNAs affect neuronal development and functions remain less well understood. In the present study, we provide evidence that the conserved microRNA miR-210 regulates lipid metabolism and prevents neurodegeneration in the Drosophila retina. miR-210 is specifically expressed in the photoreceptor neurons and other sensory organs. Genetic deletion of miR-210 leads to lipid droplet accumulation and photoreceptor degeneration in the retina. These effects are associated with abnormal activation of the Drosophila sterol regulatory element-binding protein signaling. We further identify the acetyl-coenzyme A synthetase (ACS) as one functionally important target of miR-210 in this context. Reduction of ACS in the miR-210 mutant background suppresses the neurodegeneration defects, suggesting that miR-210 acts through regulation of the ACS transcript. Together, these results reveal an unexpected role of miR-210 in controlling lipid metabolism and neuronal functions.


Assuntos
Drosophila melanogaster/genética , Metabolismo dos Lipídeos/genética , MicroRNAs/genética , Degeneração Retiniana/genética , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Homeostase , MicroRNAs/metabolismo , Neurogênese , Neurônios/metabolismo , Transdução de Sinais
7.
Cell Signal ; 53: 184-189, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30316814

RESUMO

Notch is a transmembrane receptor that mediates intercellular signaling through a conserved signaling cascade in all animal species. Transcriptional and posttranscriptional regulation of Notch receptor are important for maintaining Notch signaling activity. Here, we show that depletion of Drosophila Sin3A leads to loss of the adult wing margin and downregulation of Notch target gene expression in the developing wing disc. Sin3A regulates the Notch pathway downstream of Delta and upstream of Notch activation. The role of Sin3A in the Notch pathway is partly mediated by its ability to modulate Notch receptor transcription. Furthermore, the transcriptional activation of Notch receptor is autoregulated by Notch itself. We also provide evidence that Sin3A is required for Notch activation mediated Notch transcription. Together, our data demonstrate that Sin3A activates Notch signaling by promoting Notch transcription and reveal a previously unknown autoregulatory mechanism for Notch signaling activation during Drosophila wing development.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Asas de Animais/crescimento & desenvolvimento , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Receptores Notch/genética , Proteínas Repressoras/genética , Complexo Correpressor Histona Desacetilase e Sin3 , Ativação Transcricional , Asas de Animais/metabolismo
8.
J Zhejiang Univ Sci B ; 20(9): 766-775, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379146

RESUMO

OBJECTIVE: Mutations in LIM domain binding 3 (LDB3) gene cause idiopathic dilated cardiomyopathy (IDCM), a structural heart disease with a complicated genetic background. However, the association of polymorphisms in the LDB3 gene with susceptibility to IDCM in Chinese populations remains unexplored as dose the impact on clinical presentation. METHODS: We sequenced all exons and the adjacent part of introns of the LDB3 gene in 159 Chinese Han IDCM patients and 247 healthy controls. Then we detected the distribution of polymorphisms in the LDB3 gene in all participants and assessed their associations with risk of IDCM. Additionally, we conducted a stratified genotype-phenotype correlation analysis. RESULTS: The A allele of rs4468255 was significantly associated with IDCM (P<0.01). The rs4468255, rs11812601, rs56165849, and rs3740346 were also associated with diastolic blood pressure (DBP) and left ventricular ejection fraction (LVEF) (P<0.05). Notably, a higher frequency of rs4468255 polymorphism was observed in implantable cardioverter defibrillator (ICD) recipients under a recessive model (P<0.01), whereas the significant association disappeared after adjusting for potential confounders. However, in the dominant model, notable correlations could only be observed after adjusting for multi parameters. CONCLUSIONS: The rs4468255 was significantly correlated with IDCM of Chinese Han population. A allele of rs4468255 is higher in IDCM patients with ICD implantation, suggesting the influence of genetic background in the generation of this response. In addition, rs11812601, rs56165849, and rs3740346 in LDB3 show association with brain natriuretic peptide, DBP, and LVEF levels in patients with IDCM but did not show any association with IDCM susceptibility.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/cirurgia , Desfibriladores Implantáveis , Proteínas com Domínio LIM/genética , Polimorfismo Genético , Adulto , Idoso , Alelos , Povo Asiático , Cardiomiopatia Dilatada/etnologia , China/epidemiologia , Éxons , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Mutação , Análise de Sequência de DNA
9.
Biol Open ; 7(2)2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29437043

RESUMO

The Notch signaling pathway is highly conserved across different animal species and plays crucial roles in development and physiology. Regulation of Notch signaling occurs at multiple levels in different tissues and cell types. Here, we show that the histone deacetylase HDAC1 acts as a positive regulator of Notch signaling during Drosophila wing development. Depletion of HDAC1 causes wing notches on the margin of adult wing. Consistently, the expression of Notch target genes is reduced in the absence of HDAC1 during wing margin formation. We further provide evidence that HDAC1 acts upstream of Notch activation. Mechanistically, we show that HDAC1 regulates Notch protein levels by promoting Notch transcription. Consistent with this, the HDAC1-associated transcriptional co-repressor Atrophin (Atro) is also required for transcriptional activation of Notch in the wing disc. In summary, our results demonstrate that HDAC1 positively regulates Notch signaling and reveal a previously unidentified function of HDAC1 in Notch signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA