Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Thromb J ; 16: 32, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534008

RESUMO

BACKGROUND: The EINSTEIN-Jr program will evaluate rivaroxaban for the treatment of venous thromboembolism (VTE) in children, targeting exposures similar to the 20 mg once-daily dose for adults. A physiologically based pharmacokinetic (PBPK) model for pediatric rivaroxaban dosing has been constructed. METHODS: We quantitatively assessed the pharmacokinetics (PK) of a single rivaroxaban dose in children using population pharmacokinetic (PopPK) modelling and assessed the applicability of the PBPK model. Plasma concentration-time data from the EINSTEIN-Jr phase I study were analysed by non-compartmental and PopPK analyses and compared with the predictions of the PBPK model. Two rivaroxaban dose levels, equivalent to adult doses of rivaroxaban 10 mg and 20 mg, and two different formulations (tablet and oral suspension) were tested in children aged 0.5-18 years who had completed treatment for VTE. RESULTS: PK data from 59 children were obtained. The observed plasma concentration-time profiles in all subjects were mostly within the 90% prediction interval, irrespective of dose or formulation. The PopPK estimates and non-compartmental analysis-derived PK parameters (in children aged ≥6 years) were in good agreement with the PBPK model predictions. CONCLUSIONS: These results confirmed the applicability of the rivaroxaban pediatric PBPK model in the pediatric population aged 0.5-18 years, which in combination with the PopPK model, will be further used to guide dose selection for the treatment of VTE with rivaroxaban in EINSTEIN-Jr phase II and III studies. TRIAL REGISTRATION: ClinicalTrials.gov number, NCT01145859; registration date: 17 June 2010.

2.
Br J Clin Pharmacol ; 78(2): 353-63, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24528331

RESUMO

AIMS: This study investigated relevant pharmacodynamic and pharmacokinetic parameters during the transition from warfarin to rivaroxaban in healthy male subjects. METHODS: Ninety-six healthy men were randomized into the following three groups: warfarin [international normalized ratio (INR) 2.0-3.0] transitioned to rivaroxaban 20 mg once daily (od; group A); warfarin (INR 2.0-3.0) followed by placebo od (group B); and rivaroxaban alone 20 mg od (group C) for 4 days. Anti-factor Xa activity, inhibition of factor Xa activity, prothrombin time (PT), activated partial thromboplastin time, HepTest, prothrombinase-induced clotting time, factor VIIa activity, factor IIa activity, endogenous thrombin potential and pharmacokinetics were measured. RESULTS: An additive effect was observed on the PT and PT/INR during the initial transition period. The mean maximal prolongation of PT was 4.39-fold [coefficient of variation (CV) 18.03%; range 3.39-6.50] of the baseline value in group A, compared with 1.88-fold (CV 10.35%; range 1.53-2.21) in group B and 1.57-fold (CV 9.98%; range 1.37-2.09) in group C. Rivaroxaban had minimal influence on the PT/INR at trough levels. Inhibition of factor Xa activity, activated partial thromboplastin time and endogenous thrombin potential were also enhanced, but to a lesser extent. In contrast, the effects of rivaroxaban on anti-factor Xa activity, HepTest and prothrombinase-induced clotting time were not affected by pretreatment with warfarin. CONCLUSIONS: Changes in pharmacodynamics during the transition from warfarin to rivaroxaban vary depending on the test used. A supra-additive effect on PT/INR is expected during the initial period of transition, but pretreatment with warfarin does not influence the effect of rivaroxaban on anti-factor Xa activity.


Assuntos
Anticoagulantes , Coagulação Sanguínea/efeitos dos fármacos , Morfolinas , Tiofenos , Varfarina , Adolescente , Adulto , Anticoagulantes/farmacocinética , Anticoagulantes/farmacologia , Fator VIIa/análise , Fator Xa/análise , Voluntários Saudáveis , Humanos , Coeficiente Internacional Normatizado , Masculino , Pessoa de Meia-Idade , Morfolinas/farmacocinética , Morfolinas/farmacologia , Protrombina/análise , Tempo de Protrombina , Rivaroxabana , Tiofenos/farmacocinética , Tiofenos/farmacologia , Varfarina/farmacocinética , Varfarina/farmacologia , Adulto Jovem
3.
J Clin Pharmacol ; 61(5): 656-665, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33205449

RESUMO

The non-vitamin K antagonist oral anticoagulant rivaroxaban is used in several thromboembolic disorders. Rivaroxaban is eliminated via both metabolic degradation and renal elimination as unchanged drug. Therefore, renal and hepatic impairment may reduce rivaroxaban clearance, and medications inhibiting these clearance pathways could lead to drug-drug interactions. This physiologically based pharmacokinetic (PBPK) study investigated the pharmacokinetic behavior of rivaroxaban in clinical situations where drug clearance is impaired. A PBPK model was developed using mass balance and bioavailability data from adults and qualified using clinically observed data. Renal and hepatic impairment were simulated by adjusting disease-specific parameters, and concomitant drug use was simulated by varying enzyme activity in virtual populations (n = 1000) and compared with pharmacokinetic predictions in virtual healthy populations and clinical observations. Rivaroxaban doses of 10 mg or 20 mg were used. Mild to moderate renal impairment had a minor effect on area under the concentration-time curve and maximum plasma concentration of rivaroxaban, whereas severe renal impairment caused a more pronounced increase in these parameters vs normal renal function. Area under the concentration-time curve and maximum plasma concentration increased with severity of hepatic impairment. These effects were smaller in the simulations compared with clinical observations. AUC and Cmax increased with the strength of cytochrome P450 3A4 and P-glycoprotein inhibitors in simulations and clinical observations. This PBPK model can be useful for estimating the effects of impaired drug clearance on rivaroxaban pharmacokinetics. Identifying other factors that affect the pharmacokinetics of rivaroxaban could facilitate the development of models that approximate real-world pharmacokinetics more accurately.


Assuntos
Anticoagulantes/farmacocinética , Insuficiência Hepática/metabolismo , Insuficiência Renal/metabolismo , Rivaroxabana/farmacocinética , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Anticoagulantes/administração & dosagem , Área Sob a Curva , Simulação por Computador , Inibidores do Citocromo P-450 CYP3A/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Humanos , Taxa de Depuração Metabólica , Modelos Biológicos , Gravidade do Paciente , Rivaroxabana/administração & dosagem
4.
CPT Pharmacometrics Syst Pharmacol ; 10(10): 1195-1207, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34292671

RESUMO

Rivaroxaban has been investigated in the EINSTEIN-Jr program for the treatment of acute venous thromboembolism (VTE) in children aged 0 to 18 years and in the UNIVERSE program for thromboprophylaxis in children aged 2 to 8 years with congenital heart disease after Fontan-procedure. Physiologically-based pharmacokinetic (PBPK) and population pharmacokinetic (PopPK) modeling were used throughout the pediatric development of rivaroxaban according to the learn-and-confirm paradigm. The development strategy was to match pediatric drug exposures to adult exposure proven to be safe and efficacious. In this analysis, a refined pediatric PopPK model for rivaroxaban based on integrated EINSTEIN-Jr data and interim PK data from part A of the UNIVERSE phase III study was developed and the influence of potential covariates and intrinsic factors on rivaroxaban exposure was assessed. The model adequately described the observed pediatric PK data. PK parameters and exposure metrics estimated by the PopPK model were compared to the predictions from a previously published pediatric PBPK model for rivaroxaban. Ninety-one percent of the individual post hoc clearance estimates were found within the 5th to 95th percentile of the PBPK model predictions. In patients below 2 years of age, however, clearance was underpredicted by the PBPK model. The iterative and integrative use of PBPK and PopPK modeling and simulation played a major role in the establishment of the bodyweight-adjusted rivaroxaban dosing regimen that was ultimately confirmed to be a safe and efficacious dosing regimen for children aged 0 to 18 years with acute VTE in the EINSTEIN-Jr phase III study.


Assuntos
Inibidores do Fator Xa/farmacocinética , Rivaroxabana/farmacocinética , Tromboembolia Venosa/tratamento farmacológico , Adolescente , Criança , Pré-Escolar , Simulação por Computador , Inibidores do Fator Xa/uso terapêutico , Feminino , Técnica de Fontan , Cardiopatias Congênitas/cirurgia , Humanos , Lactente , Recém-Nascido , Masculino , Modelos Biológicos , Estudos Prospectivos , Rivaroxabana/uso terapêutico , Tromboembolia Venosa/prevenção & controle
5.
J Clin Pharmacol ; 48(12): 1400-10, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18779378

RESUMO

Preclinical data indicate that the nitric oxide-independent soluble guanylate cyclase activator cinaciguat (BAY 58-2667), which is a new drug in development for patients with heart failure, induces vasodilation preferentially in diseased vessels. This study aimed to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of cinaciguat. Seventy-six healthy volunteers were included in this randomized, placebo-controlled study. Cinaciguat (50-250 microg/h) was administered intravenously for up to 4 hours in a maximum of 6 individuals per dose group. No serious adverse events were reported. Four-hour infusions (50-250 microg/h) decreased diastolic blood pressure and increased heart rate (all P values < .05) versus placebo, without significantly reducing systolic blood pressure (P between 0.07 and 0.56). At higher doses (150-250 microg/h), 4-hour infusions decreased mean arterial pressure and increased plasma cyclic guanosine monophosphate levels (all P values < .05). Pharmacokinetics showed dose-proportionality with low interindividual variability. Plasma concentrations declined below 1.0 microg/L within 30 minutes of cessation of infusion. Cinaciguat had potent cardiovascular effects reducing preload and afterload, warranting further investigation in patients with heart failure.


Assuntos
Benzoatos/farmacocinética , Ativadores de Enzimas/farmacocinética , Guanilato Ciclase/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Adulto , Angiotensina II/sangue , Área Sob a Curva , Benzoatos/administração & dosagem , Benzoatos/química , Pressão Sanguínea/efeitos dos fármacos , GMP Cíclico/sangue , Relação Dose-Resposta a Droga , Ativadores de Enzimas/administração & dosagem , Ativadores de Enzimas/química , Meia-Vida , Frequência Cardíaca/efeitos dos fármacos , Humanos , Infusões Intravenosas , Masculino , Pessoa de Meia-Idade , Estrutura Molecular , Norepinefrina/sangue , Renina/sangue , Renina/efeitos dos fármacos , Guanilil Ciclase Solúvel , Resultado do Tratamento , Adulto Jovem
6.
J Clin Pharmacol ; 48(8): 926-34, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18519919

RESUMO

The aim of the study was to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of BAY 63-2521, a new drug in development for pulmonary hypertension. Fifty-eight healthy male volunteers received a single oral dose of BAY 63-2521 (0.25-5 mg) or placebo. No serious adverse events were reported; there were no life-threatening events. Heart rate over 1 minute, an indicator of the effect of a vasodilating agent on the cardiovascular system in healthy subjects, was increased dose dependently versus placebo at BAY 63-2521 doses of 1 to 5 mg (P < .01). Mean arterial and diastolic pressures were decreased versus placebo at doses of 1 mg (P < .05) and 5 mg (P < .01). Systolic pressure was not significantly affected. BAY 63-2521 was readily absorbed and exhibited dose-proportional pharmacokinetics. The pharmacodynamic and pharmacokinetic properties of BAY 63-2521 suggest that it can offer a unique mode of action in the treatment of pulmonary hypertension.


Assuntos
Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/farmacocinética , Guanilato Ciclase/metabolismo , Adulto , Anti-Hipertensivos/efeitos adversos , Área Sob a Curva , Pressão Sanguínea/efeitos dos fármacos , Estudos Cross-Over , GMP Cíclico/sangue , Método Duplo-Cego , Meia-Vida , Frequência Cardíaca/efeitos dos fármacos , Hormônios/sangue , Humanos , Masculino , Norepinefrina/sangue , Renina/sangue
7.
Clin Pharmacokinet ; 57(6): 647-661, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29086344

RESUMO

Oral riociguat is a soluble guanylate cyclase (sGC) stimulator that targets the nitric oxide (NO)-sGC-cyclic guanosine monophosphate pathway with a dual mode of action: directly by stimulating sGC, and indirectly by increasing the sensitivity of sGC to NO. It is rapidly absorbed, displays almost complete bioavailability (94.3%), and can be taken with or without food and as crushed or whole tablets. Riociguat exposure shows pronounced interindividual (60%) and low intraindividual (30%) variability in patients with pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH), and is therefore administered using an individual dose-adjustment scheme at treatment initiation. The half-life of riociguat is approximately 12 h in patients and approximately 7 h in healthy individuals. Riociguat and its metabolites are excreted via both renal (33-45%) and biliary routes (48-59%), and dose adjustment should be performed with particular care in patients with moderate hepatic impairment or mild to severe renal impairment (no data exist for patients with severe hepatic impairment). The pharmacodynamic effects of riociguat reflect the action of a vasodilatory agent, and the hemodynamic response to riociguat correlated with riociguat exposure in patients with PAH or CTEPH in phase III population pharmacokinetic/pharmacodynamic analyses. Riociguat has a low risk of clinically relevant drug interactions due to its clearance by multiple cytochrome P450 (CYP) enzymes and its lack of effect on major CYP isoforms and transporter proteins at therapeutic levels. Riociguat has been approved for the treatment of PAH and CTEPH that is inoperable or persistent/recurrent after surgical treatment.


Assuntos
Pirazóis/farmacologia , Pirimidinas/farmacologia , Administração Oral , Animais , Interações Medicamentosas , Humanos , Hipertensão Pulmonar/metabolismo , Pirazóis/sangue , Pirazóis/farmacocinética , Pirimidinas/sangue , Pirimidinas/farmacocinética , Guanilil Ciclase Solúvel
8.
Eur J Pharm Sci ; 96: 598-609, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27671970

RESUMO

Predicting oral bioavailability (Foral) is of importance for estimating systemic exposure of orally administered drugs. Physiologically-based pharmacokinetic (PBPK) modelling and simulation have been applied extensively in biopharmaceutics recently. The Oral Biopharmaceutical Tools (OrBiTo) project (Innovative Medicines Initiative) aims to develop and improve upon biopharmaceutical tools, including PBPK absorption models. A large-scale evaluation of PBPK models may be considered the first step. Here we characterise the OrBiTo active pharmaceutical ingredient (API) database for use in a large-scale simulation study. The OrBiTo database comprised 83 APIs and 1475 study arms. The database displayed a median logP of 3.60 (2.40-4.58), human blood-to-plasma ratio of 0.62 (0.57-0.71), and fraction unbound in plasma of 0.05 (0.01-0.17). The database mainly consisted of basic compounds (48.19%) and Biopharmaceutics Classification System class II compounds (55.81%). Median human intravenous clearance was 16.9L/h (interquartile range: 11.6-43.6L/h; n=23), volume of distribution was 80.8L (54.5-239L; n=23). The majority of oral formulations were immediate release (IR: 87.6%). Human Foral displayed a median of 0.415 (0.203-0.724; n=22) for IR formulations. The OrBiTo database was found to be largely representative of previously published datasets. 43 of the APIs were found to satisfy the minimum inclusion criteria for the simulation exercise, and many of these have significant gaps of other key parameters, which could potentially impact the interpretability of the simulation outcome. However, the OrBiTo simulation exercise represents a unique opportunity to perform a large-scale evaluation of the PBPK approach to predicting oral biopharmaceutics.


Assuntos
Biofarmácia/métodos , Bases de Dados Factuais , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Administração Oral , Avaliação Pré-Clínica de Medicamentos/métodos , Previsões , Humanos , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Preparações Farmacêuticas/administração & dosagem
9.
Pulm Circ ; 6(Suppl 1): S58-65, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27162629

RESUMO

Riociguat is a soluble guanylate cyclase stimulator approved for the treatment of pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). This randomized, double-blind, placebo-controlled study investigated the pharmacokinetics of riociguat and its metabolite M1 in young (18-45 years) and elderly (64.5-80 years) healthy volunteers of both sexes to assist planning of the dose regimens for clinical trials. The data were also used to draw comparisons with the effects of age and sex on riociguat pharmacokinetics in patients with PAH and CTEPH from the riociguat phase 3 trials, PATENT and CHEST. Volunteers received an oral dose of either riociguat 2.5 mg or placebo, and the concentrations of riociguat and M1 in blood and urine samples were determined using mass spectrometry. In elderly healthy volunteers, overall riociguat and M1 exposure tended to be higher than in young healthy volunteers (P > 0.05), partly because of reduced renal clearance (approximately 28% reduction) and differences in body weight. Although the mean maximum concentrations of riociguat and M1 were significantly higher in women than in men (35% and 50% higher, respectively), total exposure was similar. Despite differences in riociguat and M1 pharmacokinetics, riociguat was well tolerated with a comparable safety profile across all subgroups, suggesting that differences in drug exposure due to age or sex were not sufficient to warrant a dose adjustment in clinical trials. Furthermore, similar pharmacokinetics were observed in patients with PAH and CTEPH. However, particular care should be exercised during individual dose titration of riociguat in elderly patients.

10.
Pulm Circ ; 6(Suppl 1): S75-85, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27162631

RESUMO

This population pharmacokinetics (PK) analysis characterized the PK of the oral soluble guanylate cyclase stimulator riociguat in patients with renal or hepatic impairment and determined whether smoking affects riociguat dosing. Two phase 1 studies were performed in patients with renal impairment (n = 72, of whom 11 were smokers), and two were performed in those with hepatic impairment (n = 64, of whom 12 were smokers). Plasma and urine samples were collected after a single oral dose of riociguat 1.0 or 0.5 mg. Nonlinear mixed-effects modeling was used to develop a combined, two-compartment population PK model for riociguat and its main metabolite, M1. Riociguat and M1 clearance was split into renal and nonrenal parts; the nonrenal part for riociguat was divided into metabolism to M1 and a metabolic (nonrenal) part. Total clearance of riociguat was 1.912 L/h. The main route of riociguat clearance is metabolism to M1 (1.2 L/h). In this model, hepatic function biomarkers or Child-Pugh classification had no significant effect on riociguat or M1 clearance. Nonrenal (nonmetabolism) riociguat clearance was similar in all groups. Renal clearance (0.242 L/h) contributed less to riociguat total clearance, mainly determined by glomerular filtration (0.174 L/h). Renal impairment reduced riociguat and M1 clearance. Hepatic or renal impairment had limited effects on total exposure to riociguat. However, individual dose adjustment of riociguat should be administered with particular care in patients with moderate hepatic or renal impairment. Riociguat is not recommended in severe hepatic or renal impairment. Smoking reduced riociguat exposure by significantly increasing metabolism to M1.

11.
Pulm Circ ; 6(Suppl 1): S86-96, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27162632

RESUMO

This analysis aimed to characterize the pharmacokinetics (PK) and PK/pharmacodynamic (PK/PD) relationship of riociguat and its metabolite M1 in patients with chronic thromboembolic pulmonary hypertension (CTEPH) or pulmonary arterial hypertension (PAH). Blood samples were collected in two phase 3 studies-PATENT-1 (Pulmonary Arterial Hypertension Soluble Guanylate Cyclase-Stimulator Trial 1; 12 weeks; PAH) and CHEST-1 (Chronic Thromboembolic Pulmonary Hypertension Soluble Guanylate Cyclase-Stimulator Trial 1; 16 weeks; CTEPH)-and long-term extensions. Patients were initially randomized to receive placebo or riociguat, and they received riociguat in the extensions. Nonlinear mixed-effects modeling was used to develop a population PK model describing riociguat PK. PK/PD relationships were investigated by comparing derived PK parameters with changes in PD parameters. Covariate analyses included smoking status, bosentan comedication, bilirubin levels, and baseline creatinine clearance. The PK of riociguat/M1 was described by a one-compartment model. Mean population estimates for riociguat absorption rate constant, clearance, and volume of distribution were 2.17/h, 1.81 L/h, and 32.3 L, respectively; for M1 they were 0.258/h, 3.16 L/h, and 124 L. Interindividual variability was moderate for riociguat and moderate to high for M1. There was no evidence of time- or dose-dependent changes in riociguat/M1 PK. Riociguat clearance was higher in smokers (120% increase) and bosentan-treated patients (36% increase) than in nonsmokers and those not receiving bosentan. There was an inverse correlation between bilirubin and riociguat clearance. In PK/PD analyses, 6-minute walk distance was related to hemodynamic parameters, particularly pulmonary vascular resistance. Riociguat PK were described by a one-compartment model. Effects of covariates on riociguat and M1 PK were established, and a PK/PD relationship was demonstrated. (ClinicalTrials.gov identifiers: PATENT-1, NCT00810693; PATENT-2, NCT00863681; CHEST-1, NCT00855465; CHEST-2, NCT00910429.).

12.
Pulm Circ ; 6(Suppl 1): S27-34, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27096084

RESUMO

Riociguat (BAY 63-2521) is the first member of a novel class of compounds, the soluble guanylate cyclase (sGC) stimulators. Riociguat has a dual mode of action: it sensitizes sGC to endogenous nitric oxide (NO) and stimulates sGC independent of NO availability. To characterize the biopharmaceutical properties of riociguat, including absolute bioavailability, food interactions, and dose proportionality, riociguat (intravenous/oral) was administered to healthy male subjects in 3 open-label, randomized, crossover studies: absolute bioavailability (1 mg; [Formula: see text]), food effect (2.5 mg; [Formula: see text]), and dose proportionality (0.5-2.5 mg; [Formula: see text]). Absolute bioavailability was 94% (95% confidence interval [CI], 83%-107%). Riociguat absorption was delayed by a high-fat breakfast with little effect on the extent of absorption (area under the concentration-time curve [AUC]fed∶AUCfasted, 88% [90% CI, 82%-95%]). Exposure to riociguat was dose proportional over all doses (common slope of AUC, 1.09 [90% CI, 1.04-1.14]; maximum concentration, 0.98 [90% CI, 0.93-1.04]). Intraindividual variability was low; interindividual variability was moderate to high. Riociguat was well tolerated, and adverse events were consistent with the mode of action. In conclusion, riociguat shows complete oral absorption, no clinically relevant food effects, and a dose-proportional increase in systemic exposure (0.5-2.5 mg). These data support the suitability of the individualized dose adjustment scheme employed in the phase 3 clinical studies.

13.
Pulm Circ ; 6(Suppl 1): S15-26, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27162624

RESUMO

Renal impairment is a common comborbidity in patients with pulmonary hypertension. The breakdown of riociguat, an oral soluble guanylate cyclase stimulator used to treat pulmonary hypertension, may be affected by smoking because polycyclic aromatic hydrocarbons in tobacco smoke induce expression of one of the metabolizing enzymes, CYP1A1. Two nonrandomized, nonblinded studies were therefore performed to investigate the pharmacokinetics and safety of a single oral dose of riociguat 1.0 mg in individuals with mild, moderate, or severe renal impairment compared with age-, weight-, and sex-matched healthy controls, including either smokers and nonsmokers (study I) or nonsmokers alone (study II). Pharmacokinetic analyses focused on the integrated per-protocol data set of both studies (N = 63). In patients with renal impairment, the renal clearance of riociguat was reduced and its terminal half-life prolonged compared with those in healthy controls. There was a monotonic relationship between creatinine clearance on treatment day and riociguat renal clearance (R (2) = 0.62). However, increased riociguat exposure with decreasing renal function was not strictly proportional. Riociguat exposure appeared to be greater in nonsmokers than in the combined population of smokers and nonsmokers, irrespective of renal function. Adverse events were mild to moderate and in line with the mode of action of riociguat. No serious adverse events occurred. In conclusion, renal impairment was associated with reduced riociguat clearance compared with that in controls; however, riociguat exposure in patients with renal impairment was highly variable, and ranges overlapped with those observed in healthy controls.

14.
Pulm Circ ; 6(Suppl 1): S35-42, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27162625

RESUMO

In preclinical studies, drugs that increase cyclic guanosine monophosphate levels have been shown to influence platelet function/aggregation; however, the effect of riociguat on human platelets is unclear. Aspirin, a platelet inhibitor, is likely to be given concomitantly in patients receiving riociguat. It is therefore important to establish clinically whether (1) riociguat affects platelet function and (2) aspirin and riociguat interact. This randomized, open-label, crossover study investigated potential pharmacodynamic and pharmacokinetic interactions between these drugs in healthy male volunteers (N = 18). There were 3 treatment regimens: a single morning dose of riociguat 2.5 mg, aspirin 500 mg on 2 consecutive mornings, and both treatments together, with riociguat given on the second morning. Fifteen participants were available for pharmacodynamic/pharmacokinetic analysis. There was no effect of riociguat alone on bleeding time, platelet aggregation, and serum thromboxane B2 levels. The effects of aspirin on these parameters were not influenced by concomitant administration of riociguat. The pharmacokinetic profile of riociguat showed interindividual variability, which was independent of aspirin coadministration. Six of 17 participants available for safety evaluation reported at least 1 treatment-emergent adverse event. All adverse events were of mild severity, apart from 1 report of moderate headache. No serious adverse events occurred. In conclusion, riociguat demonstrated no clinically relevant pharmacodynamic or pharmacokinetic interactions with aspirin at the doses used in this study in healthy men; coadministration of riociguat and aspirin should therefore not require any dose adjustment for either drug.

15.
Pulm Circ ; 6(Suppl 1): S5-S14, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27162628

RESUMO

Riociguat, a soluble guanylate cyclase stimulator developed for the treatment of pulmonary hypertension, is metabolized in part by the liver. Expression of one of the metabolizing enzymes, CYP1A1, is induced by aromatic hydrocarbons in tobacco smoke. Two nonrandomized, nonblinded studies were conducted to investigate the pharmacokinetics of riociguat in individuals with mild (Child-Pugh A) or moderate (Child-Pugh B) hepatic impairment associated with liver cirrhosis compared with that in age-, weight-, and sex-matched healthy controls: study 1 included smokers and nonsmokers, and study 2 included nonsmokers only. Data from these studies were integrated for analysis. All participants (N = 64) received a single oral dose of riociguat 1.0 mg. Riociguat exposure was significantly higher in individuals with Child-Pugh B hepatic impairment than in healthy controls (ratio: 153% [90% confidence interval: 103%-228%]) but was similar in those with Child-Pugh A hepatic impairment and controls. The half-life of the riociguat metabolite M1 was prolonged in patients with Child-Pugh B or A hepatic impairment compared with that in controls by approximately 43% and 24%, respectively. Impaired hepatic function was associated with higher riociguat exposure in nonsmokers compared with the population of smokers and nonsmokers combined. Riociguat's safety profile was similar in individuals with impaired or normal liver function. In conclusion, moderate hepatic impairment was associated with increased riociguat exposure compared with that in controls, probably as a result of reduced clearance of the metabolite M1. This suggests that dose titration of riociguat should be administered with particular care in patients with moderate hepatic impairment.

16.
Pulm Circ ; 6(Suppl 1): S66-74, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27162630

RESUMO

Riociguat is approved for the treatment of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Some patients have difficulty swallowing tablets; therefore, 2 randomized, nonblinded, crossover studies compared the relative bioavailability of riociguat oral suspensions and immediate-release (IR) tablet and of crushed-tablet preparations versus whole IR tablet. In study 1, 30 healthy subjects received 5 single riociguat doses: 0.3 and 2.4 mg (0.15 mg/mL suspensions), 0.15 mg (0.03 mg/mL), and 1.0 mg (whole IR tablet) under fasted conditions and 2.4 mg (0.15 mg/mL) after a high-fat, high-calorie American-style breakfast. In study 2, 25 healthy men received 4 single 2.5-mg doses: whole IR tablet and crushed IR tablet suspended in applesauce and water, respectively, under fasted conditions, and whole IR tablet after a continental breakfast. In study 1, dose-normalized pharmacokinetics of riociguat oral suspensions and 1.0-mg whole IR tablet were similar in fasted conditions; 90% confidence intervals for riociguat area under the curve (AUC) to dose and mean maximum concentration (C max) to dose were within bioequivalence criteria. After food, dose-normalized AUC and C max decreased by 15% and 38%, respectively. In study 2, riociguat exposure was similar for all preparations; AUC ratios for crushed-IR-tablet preparations to whole IR tablet were within bioequivalence criteria. The C max increased by 17% for crushed IR tablet in water versus whole IR tablet. Food intake decreased C max of the whole tablet by 16%, with unaltered AUC versus fasted conditions. Riociguat bioavailability was similar between the oral suspensions and the whole IR tablet; exposure was similar between whole IR tablet and crushed-IR-tablet preparations. Minor food effects were observed. Results suggest that riociguat formulations are interchangeable.

17.
Pulm Circ ; 6(Suppl 1): S43-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27162626

RESUMO

Riociguat, a soluble guanylate cyclase stimulator, is a novel therapy for the treatment of pulmonary hypertension. Riociguat bioavailability is reduced in neutral versus acidic conditions and therefore may be affected by concomitant use of medications that increase gastric pH. The effect of coadministration of the proton pump inhibitor omeprazole or the antacid AlOH/MgOH on the pharmacokinetics, safety, and tolerability of riociguat 2.5 mg was characterized in two open-label, randomized, crossover studies in healthy males. In study 1, subjects pretreated for 4 days with omeprazole 40 mg received cotreatment with omeprazole plus riociguat or riociguat alone (no pretreatment) on day 5 (n = 12). In study 2, subjects received cotreatment with 10 mL AlOH/MgOH plus riociguat or riociguat alone (n = 12). Pre- and cotreatment with omeprazole decreased riociguat bioavailability (mean decreases in area under the plasma concentration-time curve [AUC] and maximum concentration in plasma [C max] were 26% and 35%, respectively). Cotreatment with AlOH/MgOH resulted in greater decreases in riociguat bioavailability (mean decreases in AUC and C max were 34% and 56%, respectively). In both studies, most adverse events (AEs) were of mild intensity, and no serious AEs were reported. No additional safety signals were identified. Treatment with riociguat, with or without omeprazole or AlOH/MgOH, was well tolerated, with a good safety profile. Owing to the resulting increase of gastric pH, riociguat bioavailability is reduced by coadministration with AlOH/MgOH and, to a lesser extent, by coadministration with omeprazole. Thus, antacids should not be administered within an hour of receiving riociguat, but no dose adjustment is required for coadministration of proton pump inhibitors.

18.
Pulm Circ ; 6(Suppl 1): S97-S102, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27162633

RESUMO

Female patients requiring treatment for pulmonary arterial hypertension (PAH) are advised to avoid pregnancy because of the high associated mortality rate. Oral contraception is one of the main methods of preventing pregnancy in this context, mandating pharmacokinetic and safety studies for new agents in this setting. Riociguat is a soluble guanylate cyclase stimulator approved for treatment of PAH and inoperable and persistent or recurrent chronic thromboembolic pulmonary hypertension. This single-center, randomized, nonblinded study involving healthy postmenopausal women investigated the effect of riociguat on plasma concentrations of levonorgestrel (0.15 mg) and ethinylestradiol (0.03 mg) in a combined oral contraceptive. Treatment A was a single oral tablet of levonorgestrel-ethinylestradiol. In treatment B, subjects received 2.5 mg riociguat 3 times daily for 12 days. On the eighth day, they also received a single oral tablet of levonorgestrel-ethinylestradiol. Subjects received both regimens in a crossover design. There was no change in area under the plasma concentration-time curves of levonorgestrel or ethinylestradiol or maximum concentration in plasma (C max) of levonorgestrel during combined administration versus levonorgestrel-ethinylestradiol alone. A 20% increase in the C max of ethinylestradiol was noted during coadministration; this is not anticipated to adversely impact the contraceptive efficacy or to require any dose adjustment for ethinylestradiol. Plasma concentrations and exposures of riociguat were within the expected range and were not influenced by coadministration with levonorgestrel-ethinylestradiol. Combined treatment was safe and well tolerated. In conclusion, riociguat did not change the exposure to levonorgestrel or ethinylestradiol relative to oral contraceptive administered alone.

19.
Pulm Circ ; 6(Suppl 1): S49-57, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27162627

RESUMO

Riociguat is a soluble guanylate cyclase stimulator for the treatment of pulmonary hypertension that is principally metabolized via the cytochrome P450 (CYP) pathway. Three studies in healthy males investigated potential pharmacokinetic interactions between riociguat and CYP inhibitors (ketoconazole, clarithromycin, and midazolam). In two studies, subjects were pretreated with either once-daily ketoconazole 400 mg or twice-daily clarithromycin 500 mg for 4 days before cotreatment with either riociguat 0.5 mg ± ketoconazole 400 mg or riociguat 1.0 mg ± clarithromycin 500 mg. In the third study, subjects received riociguat 2.5 mg 3 times daily (tid) for 3 days, followed by cotreatment with riociguat 2.5 mg tid ± midazolam 7.5 mg. Pharmacokinetic parameters, the effect of smoking on riociguat pharmacokinetics, safety, and tolerability were assessed. Pre- and cotreatment with ketoconazole and clarithromycin led to increased riociguat exposure. Pre- and cotreatment with riociguat had no significant effect on midazolam plasma concentrations. In all studies, the bioavailability of riociguat was reduced in smokers because its clearance to the metabolite M1 increased. Riociguat ± ketoconazole, clarithromycin, or midazolam was generally well tolerated. The most common treatment-emergent adverse events (TEAEs) across all studies were headache and dyspepsia. One serious TEAE was reported in the midazolam study. Owing to the potential for hypotension, concomitant use of riociguat with multipathway inhibitors, such as ketoconazole, should be approached with caution. Coadministration of riociguat with strong CYP3A4 inhibitors, for example, clarithromycin, does not require additional dose adjustment. No significant drug-drug interaction was revealed between riociguat and midazolam.

20.
Clin Pharmacokinet ; 53(1): 89-102, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23912563

RESUMO

BACKGROUND: Venous thromboembolism has been increasingly recognised as a clinical problem in the paediatric population. Guideline recommendations for antithrombotic therapy in paediatric patients are based mainly on extrapolation from adult clinical trial data, owing to the limited number of clinical trials in paediatric populations. The oral, direct Factor Xa inhibitor rivaroxaban has been approved in adult patients for several thromboembolic disorders, and its well-defined pharmacokinetic and pharmacodynamic characteristics and efficacy and safety profiles in adults warrant further investigation of this agent in the paediatric population. OBJECTIVE: The objective of this study was to develop and qualify a physiologically based pharmacokinetic (PBPK) model for rivaroxaban doses of 10 and 20 mg in adults and to scale this model to the paediatric population (0-18 years) to inform the dosing regimen for a clinical study of rivaroxaban in paediatric patients. METHODS: Experimental data sets from phase I studies supported the development and qualification of an adult PBPK model. This adult PBPK model was then scaled to the paediatric population by including anthropometric and physiological information, age-dependent clearance and age-dependent protein binding. The pharmacokinetic properties of rivaroxaban in virtual populations of children were simulated for two body weight-related dosing regimens equivalent to 10 and 20 mg once daily in adults. The quality of the model was judged by means of a visual predictive check. Subsequently, paediatric simulations of the area under the plasma concentration-time curve (AUC), maximum (peak) plasma drug concentration (C max) and concentration in plasma after 24 h (C 24h) were compared with the adult reference simulations. RESULTS: Simulations for AUC, C max and C 24h throughout the investigated age range largely overlapped with values obtained for the corresponding dose in the adult reference simulation for both body weight-related dosing regimens. However, pharmacokinetic values in infants and preschool children (body weight <40 kg) were lower than the 90 % confidence interval threshold of the adult reference model and, therefore, indicated that doses in these groups may need to be increased to achieve the same plasma levels as in adults. For children with body weight between 40 and 70 kg, simulated plasma pharmacokinetic parameters (C max, C 24h and AUC) overlapped with the values obtained in the corresponding adult reference simulation, indicating that body weight-related exposure was similar between these children and adults. In adolescents of >70 kg body weight, the simulated 90 % prediction interval values of AUC and C 24h were much higher than the 90 % confidence interval of the adult reference population, owing to the weight-based simulation approach, but for these patients rivaroxaban would be administered at adult fixed doses of 10 and 20 mg. CONCLUSION: The paediatric PBPK model developed here allowed an exploratory analysis of the pharmacokinetics of rivaroxaban in children to inform the dosing regimen for a clinical study in paediatric patients.


Assuntos
Anticoagulantes/farmacocinética , Modelos Biológicos , Morfolinas/farmacocinética , Tiofenos/farmacocinética , Adolescente , Adulto , Anticoagulantes/sangue , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Morfolinas/sangue , Rivaroxabana , Tiofenos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA