Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 554(7693): 519-522, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29443966

RESUMO

Remote sensing enables the quantification of tropical deforestation with high spatial resolution. This in-depth mapping has led to substantial advances in the analysis of continent-wide fragmentation of tropical forests. Here we identified approximately 130 million forest fragments in three continents that show surprisingly similar power-law size and perimeter distributions as well as fractal dimensions. Power-law distributions have been observed in many natural phenomena such as wildfires, landslides and earthquakes. The principles of percolation theory provide one explanation for the observed patterns, and suggest that forest fragmentation is close to the critical point of percolation; simulation modelling also supports this hypothesis. The observed patterns emerge not only from random deforestation, which can be described by percolation theory, but also from a wide range of deforestation and forest-recovery regimes. Our models predict that additional forest loss will result in a large increase in the total number of forest fragments-at maximum by a factor of 33 over 50 years-as well as a decrease in their size, and that these consequences could be partly mitigated by reforestation and forest protection.


Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Agricultura Florestal/estatística & dados numéricos , Florestas , Mapeamento Geográfico , Árvores/crescimento & desenvolvimento , Clima Tropical , Biomassa , Imagens de Satélites
2.
Sci Adv ; 7(37): eabg7012, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34516875

RESUMO

Large areas of tropical forests have been lost through deforestation, resulting in fragmented forest landscapes. However, the dynamics of forest fragmentation are still unknown, especially the critical forest edge areas, which are sources of carbon emissions due to increased tree mortality. We analyzed the changes in forest fragmentation for the entire tropics using high-resolution forest cover maps. We found that forest edge area increased from 27 to 31% of the total forest area in just 10 years, with the largest increase in Africa. The number of forest fragments increased by 20 million with consequences for connectivity of tropical landscapes. Simulations suggest that ongoing deforestation will further accelerate forest fragmentation. By 2100, 50% of tropical forest area will be at the forest edge, causing additional carbon emissions of up to 500 million MT carbon per year. Thus, efforts to limit fragmentation in the world's tropical forests are important for climate change mitigation.

3.
J R Soc Interface ; 13(117)2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27053657

RESUMO

Tropical forests are highly diverse ecosystems, but within such forests there can be large patches dominated by a single tree species. The myriad presumed mechanisms that lead to the emergence of such monodominant areas is currently the subject of intensive research. We used the most generic of these mechanisms, large seed mass and low dispersal ability of the monodominant species, in a spatially explicit model. The model represents seven identical species with long-distance dispersal of small seeds, competing with one potentially monodominant species with short-distance dispersal of large seeds. Monodominant patches emerged and persisted only for a narrow range of species traits; these results have the characteristic features of phase transitions. Additional mechanisms may explain monodominance in different ecological contexts, but our results suggest that percolation-like phenomena and phase transitions might be pervasive in this type of system.


Assuntos
Florestas , Modelos Biológicos , Clima Tropical
4.
BMC Res Notes ; 5: 313, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22716016

RESUMO

BACKGROUND: Establishment success in newly founded populations relies on reaching the established phase, which is defined by characteristic fluctuations of the population's state variables. Stochastic population models can be used to quantify the establishment probability of newly founded populations; however, so far no simple but robust method for doing so existed. To determine a critical initial number of individuals that need to be released to reach the established phase, we used a novel application of the "Wissel plot", where -ln(1 - P0(t)) is plotted against time t. This plot is based on the equation P(0)t=1-c(1)e(-ω(1t)), which relates the probability of extinction by time t, P(0)(t), to two constants: c(1) describes the probability of a newly founded population to reach the established phase, whereas ω(1) describes the population's probability of extinction per short time interval once established. RESULTS: For illustration, we applied the method to a previously developed stochastic population model of the endangered African wild dog (Lycaon pictus). A newly founded population reaches the established phase if the intercept of the (extrapolated) linear parts of the "Wissel plot" with the y-axis, which is -ln(c(1)), is negative. For wild dogs in our model, this is the case if a critical initial number of four packs, consisting of eight individuals each, are released. CONCLUSIONS: The method we present to quantify the establishment probability of newly founded populations is generic and inferences thus are transferable to other systems across the field of conservation biology. In contrast to other methods, our approach disaggregates the components of a population's viability by distinguishing establishment from persistence.


Assuntos
Animais Selvagens/fisiologia , Canidae/fisiologia , Espécies em Perigo de Extinção/estatística & dados numéricos , Modelos Biológicos , Probabilidade , Animais , Comportamento Animal , Simulação por Computador , Extinção Biológica , Feminino , Modelos Lineares , Tamanho da Ninhada de Vivíparos , Longevidade , Masculino , Densidade Demográfica , Processos Estocásticos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA