Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 121(5): 056101, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30118288

RESUMO

Single atom detection is of key importance to solving a wide range of scientific and technological problems. The strong interaction of electrons with matter makes transmission electron microscopy one of the most promising techniques. In particular, aberration correction using scanning transmission electron microscopy has made a significant step forward toward detecting single atoms. However, to overcome radiation damage, related to the use of high-energy electrons, the incoming electron dose should be kept low enough. This results in images exhibiting a low signal-to-noise ratio and extremely weak contrast, especially for light-element nanomaterials. To overcome this problem, a combination of physics-based model fitting and the use of a model-order selection method is proposed, enabling one to detect single atoms with high reliability.

2.
J Microsc ; 268(3): 305-312, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29023712

RESUMO

In this work, we analyse the microstructure and local chemical composition of green-emitting Inx Ga1-x N/GaN quantum well (QW) heterostructures in correlation with their emission properties. Two samples of high structural quality grown by metalorganic vapour phase epitaxy (MOVPE) with a nominal composition of x = 0.15 and 0.18 indium are discussed. The local indium composition is quantitatively evaluated by comparing scanning transmission electron microscopy (STEM) images to simulations and the local indium concentration is extracted from intensity measurements. The calculations point out that the measured indium fluctuations may be correlated to the large width and intensity decrease of the PL emission peak.

3.
Ultramicroscopy ; 233: 113425, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34800894

RESUMO

We report a study of scattering dynamics in crystals employing momentum-resolved scanning transmission electron microscopy under varying illumination conditions. As we perform successive changes of the probe focus, multiple real-space signals are obtained in dependence of the shape of the incident electron wave. With support from extensive simulations, each signal is shown to be characterised by an optimum focus for which the contrast is maximum and which differs among different signals. For instance, a systematic focus mismatch is found between images formed by high-angle scattering, being sensitive to thickness and chemical composition, and the first moment in diffraction space, being sensitive to electric fields. It follows that a single recording at one specific probe focus is usually insufficient to characterise materials comprehensively. Most importantly, we demonstrate in experiment and simulation that the second moment µ20+µ02=〈p2〉 of the diffracted intensity exhibits a contrast maximum when the electron probe is focused at the top and bottom faces of the specimen, making the presented concept attractive for measuring local topography. Given the versatility of 〈p2〉, we furthermore present a detailed study of its large-angle convergence both analytically using the Mott scattering approach, and by dynamical simulations using the multislice algorithm including thermal diffuse scattering. Both approaches are in very good agreement and yield logarithmic divergence with increasing scattering angle.

4.
Ultramicroscopy ; 219: 113046, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32927326

RESUMO

In electron microscopy, the maximum a posteriori (MAP) probability rule has been introduced as a tool to determine the most probable atomic structure from high-resolution annular dark-field (ADF) scanning transmission electron microscopy (STEM) images exhibiting low contrast-to-noise ratio (CNR). Besides ADF imaging, STEM can also be applied in the annular bright-field (ABF) regime. The ABF STEM mode allows to directly visualize light-element atomic columns in the presence of heavy columns. Typically, light-element nanomaterials are sensitive to the electron beam, limiting the incoming electron dose in order to avoid beam damage and leading to images exhibiting low CNR. Therefore, it is of interest to apply the MAP probability rule not only to ADF STEM images, but to ABF STEM images as well. In this work, the methodology of the MAP rule, which combines statistical parameter estimation theory and model-order selection, is extended to be applied to simultaneously acquired ABF and ADF STEM images. For this, an extension of the commonly used parametric models in STEM is proposed. Hereby, the effect of specimen tilt has been taken into account, since small tilts from the crystal zone axis affect, especially, ABF STEM intensities. Using simulations as well as experimental data, it is shown that the proposed methodology can be successfully used to detect light elements in the presence of heavy elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA