Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(6): e2307242, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37771206

RESUMO

Photovoltaic thin film solar cells based on kesterite Cu2 ZnSn(S, Se)4 (CZTSSe) have reached 13.8% sunlight-to-electricity conversion efficiency. However, this efficiency is still far from the Shockley-Queisser radiative limit and is hindered by the significant deficit in open circuit voltage (VOC ). The presence of high-density interface states between the absorber layer and buffer or window layer leads to the recombination of photogenerated carriers, thereby reducing effective carrier collection. To tackle this issue, a new window structure ZnO/AgNW/ZnO/AgNW (ZAZA) comprising layers of ZnO and silver nanowires (AgNWs) is proposed. This structure offers a simple and low-damage processing method, resulting in improved optoelectronic properties and junction quality. The ZAZA-based devices exhibit enhanced VOC due to the higher built-in voltage (Vbi ) and reduced interface recombination compared to the usual indium tin oxide (ITO) based structures. Additionally, improved carrier collection is demonstrated as a result of the shortened collection paths and the more uniform carrier lifetime distribution. These advances enable the fabrication of the first ITO-free CZTSSe solar cells with over 10% efficiency without an anti-reflective coating.

2.
Molecules ; 28(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836699

RESUMO

Improving thermal stability is of great importance for the industrialization of polymer solar cells (PSC). In this paper, we systematically investigated the high-temperature thermal annealing effect on the device performance of the state-of-the-art polymer:non-fullerene (PM6:Y6) solar cells with an inverted structure. Results revealed that the overall performance decay (19% decrease) was mainly due to the fast open-circuit voltage (VOC, 10% decrease) and fill factor (FF, 10% decrease) decays whereas short circuit current (JSC) was relatively stable upon annealing at 150 °C (0.5% decrease). Pre-annealing on the ZnO/PM6:Y6 at 150 °C before the completion of cell fabrication resulted in a 1.7% performance decrease, while annealing on the ZnO/PM6:Y6/MoO3 films led to a 10.5% performance decay, indicating that the degradation at the PM6:Y6/MoO3 interface is the main reason for the overall performance decay. The increased ideality factor and reduced built-in potential confirmed by dark J - V curve analysis further confirmed the increased interfacial charge recombination after thermal annealing. The interaction of PM6:Y6 and MoO3 was proved by UV-Vis absorption and XPS measurements. Such deep chemical doping of PM6:Y6 led to unfavorable band alignment at the interface, which led to increased surface charge recombination and reduced built-in potential of the cells after thermal annealing. Inserting a thin C60 layer between the PM6:Y6 and MoO3 significantly improved the cells' thermal stability, and less than 2% decay was measured for the optimized cell with 3 nm C60.

3.
J Org Chem ; 87(8): 5057-5064, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35333523

RESUMO

4,4'-Spiro-bis[cyclopenta[2,1-b;3,4-b']dithiophene] (SCT) is a versatile building block for constructing three-dimensional (3D) π-conjugated molecules for use in organic electronics. In this paper, we report a more convenient synthetic route to SCT and its derivatives, where a structurally symmetric 3,3'-dibromo-5,5'-bis(trimethylsilyl)-2,2'-bithiophene (2) serves as the precursor for both the synthesis of 4H-cyclopenta[2,1-b:3,4-b']dithiophen-4-one (4) and 4-(5,5'-bis(trimethylsilyl)-2,2'-bithiophen-3-yl)-2,6-bis(trimethylsilyl)-4-hydroxy-cyclopenta[2,1-b;3,4-b']dithiophene (5). The later one is the key intermediate for the final brominated SCT building block. Such a "two birds with one stone" strategy simplifies the synthetic approach to the SCT core. Functionalization on the SCT core with different terminal electron-deficient groups, including 1H-indene-1,3(2H)-dione (ID), 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IC), and 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (FIC), was carried out, yielding three spiro-conjugated A-D-A type molecules, SCT-(TID)4, SCT-(TIC)4, SCT-(TFIC)4, respectively. The optical spectroscopy and electrochemical properties of these three compounds were investigated and compared to the corresponding linear oligomers. Results revealed that the IC and TFIC terminated compounds showed low-lying HOMO/LUMO energy levels with reduced optical bandgap, making them more suitable for use in polymer solar cells. A power conversion efficiency of 3.73% was achieved for the SCT-(TFIC)4 based cell, demonstrating the application perspective of 3D molecules.

4.
Nanotechnology ; 31(18): 18LT01, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31978905

RESUMO

The electrical breakdown is a bottleneck preventing AgNW networks from being used in high-current electronics such as transparent heaters or similar applications. The process of failure confirms that Joule-heating plays a key role in the formation of cracks perpendicular to the voltage direction. To improve the transfer of Joule heating, solution-processed ZnO nanoparticles were deposited on a gravure printed AgNW random network with good transparency. The AgNW-ZnO nanocomposites show better heating uniformity at higher temperatures because of their improved thermal conductivity. A 57.7% higher power density was obtained without failure, as well as the improved maximum average temperature rise from 72.2 °C to 97.9 °C, after the AgNW was composited with ZnO. This work opens up a new method to study AgNW failures for applications in high-current electronics.

5.
Beilstein J Org Chem ; 12: 1788-1797, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27829886

RESUMO

Benzo[1,2-b:4,5-b']dithiophene (BDT) is an excellent building block for constructing π-conjugated molecules for the use in organic solar cells. In this paper, four 4,8-bis(5-alkyl-2-thienyl)benzo[1,2-b:4,5-b']dithiophene (TBDT)-containing A-π-D-π-A-type small molecules (COOP-nHT-TBDT, n = 1, 2, 3, 4), having 2-cyano-3-octyloxy-3-oxo-1-propenyl (COOP) as terminal group and regioregular oligo(3-hexylthiophene) (nHT) as the π-conjugated bridge unit were synthesized. The optical and electrochemical properties of these compounds were systematically investigated. All these four compounds displayed broad absorption bands over 350-600 nm. The optical band gap becomes narrower (from 1.94 to 1.82 eV) and the HOMO energy levels increased (from -5.68 to -5.34 eV) with the increase of the length of the π-conjugated bridge. Organic solar cells using the synthesized compounds as the electron donor and PC61BM as the electron acceptor were fabricated and tested. Results showed that compounds with longer oligothiophene π-bridges have better power conversion efficiency and higher device stability. The device based on the quaterthiophene-bridged compound 4 gave a highest power conversion efficiency of 5.62% with a VOC of 0.93 V, JSC of 9.60 mA·cm-2, and a FF of 0.63.

6.
Adv Mater ; 36(7): e2305135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37590909

RESUMO

Sodium-ion batteries (SIBs) are a viable alternative to meet the requirements of future large-scale energy storage systems due to the uniform distribution and abundant sodium resources. Among the various cathode materials for SIBs, phosphate-based polyanionic compounds exhibit excellent sodium-storage properties, such as high operation voltage, remarkable structural stability, and superior safety. However, their undesirable electronic conductivities and specific capacities limit their application in large-scale energy storage systems. Herein, the development history and recent progress of phosphate-based polyanionic cathodes are first overviewed. Subsequently, the effective modification strategies of phosphate-based polyanionic cathodes are summarized toward high-performance SIBs, including surface coating, morphological control, ion doping, and electrolyte optimization. Besides, the electrochemical performance, cost, and industrialization analysis of phosphate-based polyanionic cathodes for SIBs are discussed for accelerating commercialization development. Finally, the future directions of phosphate-based polyanionic cathodes are comprehensively concluded. It is believed that this review can provide instructive insight into developing practical phosphate-based polyanionic cathodes for SIBs.

7.
ACS Appl Mater Interfaces ; 16(9): 11767-11777, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408283

RESUMO

In addition to the donor-acceptor nano phases, the intermixed phase within the organic blends is crucial for the photovoltaic performance and stability of the bulk-heterojunction organic solar cells (OSCs). Here, the intermixed phase of a representative M-PhS:BTP-eC9 all-small-molecule organic solar cell was investigated by a concentration-dependent ultraviolet-visible (UV-vis) absorption spectroscopy method, where a shift of the absorption maximum wavelength was measured for the acceptor component with the increase of the acceptor concentration. The blend ratios of the acceptor to the donor in the intermixed phase, corresponding to the critical concentration for the formation of the acceptor nanophase (CAP), were determined to be 0.35, 0.20, and 0.15 for the as-cast, thermal annealing (TA), and the combined TA and solvent vapor annealing films. These results indicated that M-PhS and BTP-eC9 are kinetically well intermixed during spin coating, whereas TA and the following solvent annealing promote the crystallization of BTP-eC9 molecules out of the intermixed phase. The photovoltaic performance of the M-PhS:BTP-eC9 cells with different blend ratios was investigated. The formation of the BTP-eC9 nano phase in the blend film leads to stable VOC and fast increased JSC, which can be understood by the reduction of bimolecular charge recombination and the formation of electron transporting pathways within the photoactive layer. Similarly, the critical concentration for the formation of the donor phase was estimated to be 0.15 by measuring the stabilized VOC and increased JSC values of the cells with different donor blending ratios. More importantly, after a fast "burn-in" thermal degradation, the M-PhS:BTP-eC9 cell showed excellent thermal stability aging at 85 °C for over 1128 h, which is in good accordance with the unchanged intermixed phases measured by the UV-vis spectra of the annealed films. The current work demonstrates the feasibility of the spectroscopy method to investigate the intermixed phases for organic bulk-heterojunction solar cells and proves that all-small-molecule solar cells can be intrinsically very stable.

8.
ACS Nano ; 18(13): 9354-9364, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38517038

RESUMO

Na3V2(PO4)3 (NVP) based on the multielectron reactions between V2+ and V5+ has been considered a promising cathode for sodium-ion batteries (SIBs). However, it still suffers from unsatisfactory stability, caused by the poor reversibility of the V5+/V4+ redox couple and structure evolution. Herein, we propos a strategy that combines high-entropy substitution and electrolyte optimization to boost the reversible multielectron reactions of NVP. The high reversibility of the V5+/V4+ redox couple and crystalline structure evolution are disclosed by in situ X-ray absorption near-edge structure spectra and in situ X-ray diffraction. Meanwhile, the electrochemical reaction kinetics of high-entropy substitution NVP (HE-NVP) can be further improved in the diglyme-based electrolyte. These enable HE-NVP to deliver a superior electrochemical performance (capacity retention of 93.1% after 2000 cycles; a large reversible capacity of 120 mAh g-1 even at 5.0 A g-1). Besides, the long cycle life and high power density of the HE-NVP∥natural graphite full-cell configuration demonstrated the superiority of HE-NVP cathode in SIBs. This work highlights that the synergism of high-entropy substitution and electrolyte optimization is a powerful strategy to enhance the sodium-storage performance of polyanionic cathodes for SIBs.

9.
Adv Mater ; 35(46): e2305092, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37487579

RESUMO

Photovoltaic windows with easy installation for the power supply of household appliances have long been a desire of energy researchers. However, due to the lack of top electrodes that offer both high transparency and low sheet resistance, the development of high-transparency photovoltaic windows for indoor lighting scenarios has lagged significantly behind photovoltaic windows where privacy issues are involved. Addressing this issue, this work develops a solution-processable transparent top electrode using sandwich structure silver nanowires, realizing high transparency in semi-transparent organic solar cells. The wettability and conducting properties of the electrode are improved by a modified hole-transport layer named HP. The semi-transparent solar cell exhibits good see-through properties at a high average visible transmittance of 50.8%, with power conversion efficiency of 7.34%, and light utilization efficiency of 3.73%, which is the highest without optical modulations. Moreover, flexible devices based on the above-mentioned architecture also show excellent mechanical tolerance compared with Ag electrode counterparts, which retains 94.5% of their original efficiency after 1500 bending cycles. This work provides a valuable approach for fabricating solution-processed high transparency organic solar cells, which is essential in future applications in building integrated photovoltaics.

10.
Small Methods ; 7(7): e2300224, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37029583

RESUMO

Aiming to improve the environmental stability of organic photovoltaics, a multilayered SiOx Cy /a-SiNx (O):H composite barrier film coated with a hydrophobic perfluoro copolymer stop layer for polymer:non-fullerene solar cells is developed. The composite film is prepared by spin-coating of polysilicone and perhydropolysilazane (PHPS) following a densification process by vacuum ultraviolet irradiation in an inert atmosphere. The transformation of polysilicone and PHPS to SiOx Cy and a-SiNx (O):H is confirmed by Fourier transform infrared and energy-dispersive X-ray spectroscopy measurement. However, the as-prepared PHPS-derived silicon nitride (PDSN) can react with moisture in the ambient atmosphere, yielding microscale defects and a consequent poor barrier performance. Treating the incomplete PDSN with methanol vapor significantly densifies the film yielding low water vapor transmission rates (WVTRs)of 5.0 × 10-1 and 2.0 × 10-1 g m-2  d-1 for the one- and three-couple of SiOx Cy /a-SiNx (O):H (CON) composite films, respectively. By incorporating a thin hydrophobic perfluoro copolymer layer, the three-coupled methanol-treated CON film with a total thickness of 600 nm shows an extremely low WVTR of 8.7 × 10-4 g m-2  d-1 . No performance decay is measured for the PM6:Y6 and PM6:L8-BO cells after such an encapsulation process. These encapsulated polymer cells show good stability storaged at 25 °C/50% relative humidity, or under simulated extreme rainstorm tests.

11.
Adv Mater ; 35(2): e2207656, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36314390

RESUMO

Perovskite solar cells (PSCs) longevity is nowadays the bottleneck for their full commercial exploitation. Although lot of research is ongoing, the initial decay of the output power - an effect known as "burn-in" degradation happening in the first 100 h - is still unavoidable, significantly reducing the overall performance (typically of >20%). In this paper, the origin of the "burn-in" degradation in n-i-p type PSCs is demonstrated that is directly related to Li+ ions migration coming from the SnO2 electron transporting layer visualized by time-of-flight secondary ion mass spectrometry (TOF-SIMS) measurements. To block the ion movement, a thin cross-linked [6,6]-phenyl-C61-butyric acid methyl ester layer on top of the SnO2 layer is introduced, resulting in Li+ immobilization. This results in the elimination of the "burn-in" degradation, showing for the first time a zero "burn-in" loss in the performances while boosting device power conversion efficiency to >22% for triple-cation-based PSCs and >24% for formamidinium-based (FAPbI3 ) PSCs, proving the general validity of this approach and creating a new framework for the realization of stable PSCs devices.

12.
Natl Sci Rev ; 10(4): nwac285, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36960222

RESUMO

Flexible organic solar cells (FOSCs) are one of the most promising power sources for aerospace aircraft due to their attractive advantages with high power-per-weight ratio and excellent mechanical flexibility. Understanding the performance and stability of high-performance FOSCs is essential for the further development of FOSCs for aerospace applications. In this paper, after systematic investigations on the performance of the state-of-the-art high-performance solar cells under thermal cycle and intensive UV irradiation conditions, in situ performance and stability tests of the solar cells in the 35 km stratospheric environment were carried out through a high-altitude balloon uploading. The encapsulated FOSCs with an area of 0.64 cm2 gave the highest power density of 15.26 mW/cm2 and an efficiency over 11%, corresponding to a power-per-weight ratio of over 3.32 kW/kg. More importantly, the cells showed stable power output during the 3-h continuous flight at 35 km and only 10% performance decay after return to the lab, suggesting promising stability of the FOSCs in the stratospheric environment.

13.
Chemistry ; 18(40): 12880-901, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22907912

RESUMO

The synthesis of generational dendritic oligothiophenes (DOTs) has been successfully achieved by a divergent/convergent approach that involves halogenation, boronation, and palladium-catalyzed Suzuki coupling reactions. The key point in the presented synthetic approach is the use of trimethylsilyl (TMS) protecting groups, which allow for the core-lithiation and subsequent boronation of the dendrons and for the peripheral ipso-substitution with iodine monochloride or N-bromosuccimide. In addition, the TMS protecting groups can be completely removed by using tetrabutylammonium fluoride, thus yielding only-thiophene-based dendrons and dendrimers. Due to their highly branched structure, all these synthesized DOTs are soluble in organic solvents. Chemical structures were confirmed by NMR spectroscopic, mass spectrometric, and elemental analysis. Concentration-dependent (1)H NMR spectroscopic investigations revealed that the higher generation compounds tend to aggregate in solution. Such an aggregation behavior was further confirmed by measuring with MALDI-TOF MS. Both MALDI-TOF MS and gel-permeation chromatography (GPC) analyses confirmed the monodispersity of the DOTs. Furthermore, GPC results revealed that these DOT molecules adopt a condensed globular molecular shape. Their optical and electronic properties were also investigated. The results indicated that these DOTs comprise various conjugated α-oligothiophenes with different chain lengths, which results in the higher generation compounds showing broad and featureless UV/Vis absorption spectra and ill-defined redox waves.

14.
Adv Mater ; 34(17): e2110276, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35243697

RESUMO

Printed metal nanogrid electrode exhibits superior characteristics for use in flexible organic solar cells (OSCs). However, the high surface roughness and inhomogeneity between grid and blank region is adverse for performance improvement. In this work, a thin amorphous indium tin oxide (ITO) film (α-ITO) is introduced to fill the blank and to improve the charge transporting. The introduction of α-ITO significantly improves the comprehensive properties of metal grid electrode, which exhibits excellent bending resistance and long-term stability under double 85 condition (under 85 °C and 85% relative humidity) for 200 h. Both experimental and simulation results reveal α-ITO with a sheet resistance of 20 000 Ω â–¡-1 is sufficient to improve the charge transporting within the adjacent grids, leading to a remarkable efficiency of 16.54% for 1 cm2 flexible devices. With area increased to 4.00, 9.00, and 25.42 cm2 , the devices still display a performance of 16.22%, 14.69%, and 12.42%, respectively, showing less efficiency loss during upscaling. And the 25.42 cm2 monolithic flexible device exhibits a certificated efficiency of 12.03%. Moreover, the device shows significantly improved air stability relative to conventional high-conductive poly(3,4-ethylenedioxythiophene):polystyrene sulfonate-modified device. All these make the α-ITO-modified Ag/Cu electrode promise to achieve high-efficient and long-term stable large-area flexible OSCs.

15.
Adv Sci (Weinh) ; 9(7): e2104588, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35032362

RESUMO

Despite the tremendous efforts in developing non-fullerene acceptor (NFA) for polymer solar cells (PSCs), only few researches are done on studying the NFA molecular structure dependent stability of PSCs, and long-term stable PSCs are only reported for the cells with low efficiency. Herein, the authors compare the stability of inverted PM6:NFA solar cells using ITIC, IT-4F, Y6, and N3 as the NFA, and a decay rate order of IT-4F > Y6 ≈ N3 > ITIC is measured. Quantum chemical calculations reveal that fluorine substitution weakens the C═C bond and enhances the interaction between NFA and ZnO, whereas the ß-alkyl chains on the thiophene unit next to the C═C linker blocks the attacking of hydroxyl radicals onto the C═C bonds. Knowing this, the authors choose a bulky alkyl side chain containing molecule (named L8-BO) as the acceptor, which shows slower photo bleaching and performance decay rates. A combination of ZnO surface passivation with phenylethanethiol (PET) yields a high efficiency of 17% and an estimated long T80 and Ts80 of 5140 and 6170 h, respectively. The results indicate functionalization of the ß-position of the thiophene unit is an effective way to improve device stability of the NFA.

16.
Adv Mater ; 34(33): e2203379, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35765940

RESUMO

Forming an ideal bulk heterojunction (BHJ) morphology is a critical issue governing the photon to electron process in organic solar cells (OSCs). Complementary to the widely-used blend casting (BC) method for BHJ construction, sequential casting (SC) can also enable similar or even better morphology and device performance for OSCs. Here, BC and SC methods on three representative donor:acceptor (D:A) blends are utilized, that is, PM6:PC71 BM, PM6:IT-4F and PM6:L8-BO. Higher power conversion efficiencies (PCEs) in all cases by taking advantage of beneficial morphology from SC processing are achieved, and a champion PCE of 18.86% (certified as 18.44%) based on the PM6:L8-BO blend is reached, representing the record value among binary OSCs. The observations on phase separation and vertical distribution inspire the proposal of the swelling-intercalation phase-separation model to interpret the morphology evolution during SC processing. Further, the vertical phase segregation is found to deliver an improvement of device performance via affecting the charge transport and collection processes, as evidenced by the D:A-ratio-dependent photovoltaic properties. Besides, OSCs based on SC processing show advantages on device photostability and upscale fabrication. This work demonstrates the versatility and efficacy of the SC method for BHJ-based OSCs.

17.
Adv Mater ; 34(45): e2206269, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36106624

RESUMO

With the continuous breakthrough of the efficiency of organic photovoltaics (OPVs), their practical applications are on the agenda. However, the thickness tolerance and upscaling in recently reported high-efficiency devices remains challenging. In this work, the multiphase morphology and desired carrier behaviors are realized by utilizing a quaternary strategy. Notably, the exciton separation, carrier mobility, and carrier lifetime are enhanced significantly, the carrier recombination and the energy loss (Eloss ) are reduced, thus beneficial for a higher short-circuit density (JSC ), fill factor (FF), and open-circuit voltage (VOC ) of the quaternary system. Moreover, the intermixing-phase size is optimized, which is favorable for constructing the thick-film and large-area devices. Finally, the device with a 110 nm-thick active layer shows an outstanding power conversion efficiency (PCE) of 19.32% (certified 19.35%). Furthermore, the large-area (1.05 and 72.25 cm2 ) devices with 110 nm thickness present PCEs of 18.25% and 12.20%, and the device with a 305 nm-thick film (0.0473 cm2 ) delivers a PCE of 17.55%, which are among the highest values reported. The work demonstrates the potential of the quaternary strategy for large-area and thick-film OPVs and promotes the practical application of OPVs in the future.

18.
Chemistry ; 17(5): 1507-18, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21268153

RESUMO

Three-dimensional (3D) π-conjugated dendritic oligothiophenes up to a third generation have been functionalized with tris(decyloxy)phenylethynyl tails at the periphery. The first-generation compounds (3 T-p-Ph-C10 and 6 T-p-Ph-C10) were synthesized by palladium-catalyzed Sonogashira coupling reactions, whereas the higher generation products were synthesized by palladium-catalyzed Suzuki coupling reactions in a divergent approach. The optical and electrochemical properties were investigated by UV/Vis absorption, fluorescence spectroscopy, and cyclic voltammetry. The results revealed that the terminal tris(alkyloxy)phenylethynyl groups are conjugated to the branched oligothiophene core, yielding redshifted absorption and fluorescence spectra and reduced optical band gaps relative to the dendritic oligothiophene core. A structural study revealed a close relationship between the type of supramolecular organization and the size of the oligothiophene core. The first-generation compounds 3 T-p-Ph-C10 and 6 T-p-Ph-C10 displayed columnar phases in the bulk state, which was confirmed by two-dimensional wide-angle X-ray scattering (2D WAXS) measurements. The self-assembly into columnar stacks has mainly been attributed to phase separation between the rigid thiophene cores and the flexible side-chains assisted by minor π-stacking interactions between the conjugated dendritic oligothiophene units. The high-generation compounds, however, showed less ordered structures in the solid state.

19.
Chemistry ; 17(20): 5549-60, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21488109

RESUMO

Apart from molecular properties, intermolecular forces play a vital role in defining the performance of organic electronic devices. This is particularly relevant in bulk heterojunction (BHJ) solar cells in which the arrangement of electron-donor and -acceptor materials into distinct crystalline phases of ideal size and distribution can lead to better power conversion efficiencies. In this study, a series of fluorenyl hexa-peri-hexabenzocoronenes (FHBC) decorated with thiophene dendrons (DOT) of variable size was obtained by using a convergent synthetic approach. With such variety of molecular sizes and shapes in hand, the objective of this study is to highlight the relationships between molecular properties, bulk properties and device performance. Correlations between π-π stacking ability and dendrimer generation were established from self-organisation studies in solution and solid state. The synergistic combination of molecular organisation at the nanoscale and photophysical characteristics derived from the FHBC and DOT moieties leads to a notable improvement of the photovoltaic performance.


Assuntos
Dendrímeros/química , Compostos Policíclicos/química , Compostos Policíclicos/síntese química , Tiofenos/química , Tiofenos/síntese química , Fontes de Energia Elétrica , Estrutura Molecular , Processos Fotoquímicos , Energia Solar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
ACS Appl Mater Interfaces ; 13(15): 17869-17881, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33847479

RESUMO

For the inverted organic solar cells (OSCs), the interface contacts between the ZnO electron transporting layer and the organic active layer play an important role in the device performance and stability. Since the solution-processed ZnO surface always contains some base or zinc salt contaminants, we explored how the surface pH conditions influence the performance and stability of the nonfullerene acceptor (NFA) cells. A tight relationship between the surface pH condition and the device performance and stability was established. Specifically, device performance and stability were improved by treating the ZnO films with acid solutions but worsened after base treatment. The large number of hydroxyl groups on the surface of the solution-processed ZnO films was proved to be the main reason for the surface pH condition-related performance, which caused oxygen-deficient defects and unfavorable vertical phase separation in the blend films, hindered the photogenerated charge transfer and collection, and consequently resulted in low short-circuit current density and power conversion efficiency (PCE). The surface -OH groups also boosted the photocatalytic activity and led to fast degradation of the nonfullerene acceptor. Removal of the surface -OH groups can alleviate such problems. Different acid solutions, ZrAcac, 2-phenylethylmercaptan (PET), and glutamic acid (GC), were used to treat the ZnO films, and PET treatment was the most effective treatment for performance improvement. An efficiency of 16.46% was achieved for the PM6:Y6 cells and the long-term stability under continuous illumination conditions was significantly improved with a T80 lifetime of over 4000 h (4410 h), showing the excellent long-term stability of this heterojunction solar cell. Our understanding of the surface pH condition-related device performance and stability would guide the development of a feasible method for solving the interface problems in OSCs. We also provide a practical strategy to modify ZnO with acid solutions for high-performance and stable NFA OSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA