Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Sep Sci ; 46(19): e2300205, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37525342

RESUMO

The development of novel sample preparation media plays a crucial role in pharmaceutical analysis. To facilitate the extraction and enrichment of pharmaceutical molecules in complex samples, various functionalized materials have been developed and prepared as adsorbents. Recently, some functionalized porous organic materials have become adsorbents for pharmaceutical analysis due to their unique properties of adsorption and recognition. These advanced porous organic materials, combined with consequent analytical techniques, have been successfully used for pharmaceutical analysis in complex samples such as environmental and biological samples. This review encapsulates the progress of advanced porous materials for pharmaceutical analysis including pesticides, antibiotics, chiral drugs, and other compounds in the past decade. In addition, we also address the limitations and future trends of these porous organic materials in pharmaceutical analysis.


Assuntos
Manejo de Espécimes , Porosidade , Adsorção , Preparações Farmacêuticas
2.
Fitoterapia ; 172: 105750, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977304

RESUMO

Although chickpea have great potential in the treatment of obesity and diabetes, the bioactive components and therapeutic targets of chickpea to prevent insulin resistance (IR) are still unclear. The purpose of this study was to investigate the chemical and pharmacological characteristics of chickpea on IR through serum pharmacochemistry and network pharmacology. The results revealed that compared with other polar fractions, the ethyl acetate extract of chickpea (CE) had the definitive performance on enhancing the capacities of glucose consumption and glycogen synthesis. In addition, we analyzed the components of CE in vivo and in vitro based on UPLC-Q-Orbitrap HRMS technology. There were 28 kinds of in vitro chemical components, among which the isoflavones included biochanin A, formononetin, ononin, sissotrin, and astragalin, etc. Concerningly, the chief prototype components of CE absorbed into the blood were biochanin A, formononetin, loliolide, and lenticin, etc. Furthermore, a total of 209 common targets between IR and active components of CE were screened out by network pharmacology, among which the key targets involved PI3K p85, NF-κB p65 and estrogen receptor 1, etc. Specifically, KEGG pathway analysis indicated that PI3K-AKT signaling pathway, HIF-1 signaling pathway, and AGE-RAGE signaling pathway may play critical roles in the IR remission by CE. Finally, the in vitro validation experiments disclosed that CE significantly balanced the oxidative stress state of IR-HepG2 cells and inhibited expressions of inflammatory cytokines. In conclusion, the present study will be an important reference for clarifying the pharmacodynamic substance basis and underlying mechanism of chickpea to alleviate IR.


Assuntos
Cicer , Medicamentos de Ervas Chinesas , Resistência à Insulina , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Estrutura Molecular , Simulação de Acoplamento Molecular
3.
J Hazard Mater ; 465: 133084, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38039811

RESUMO

Per- and polyfluoroalkyl substances (PFASs) and polychlorinated naphthalenes (PCNs) are of growing concern due to their toxic effects on the environment and human health. There is an urgent need for strategies to monitor and analyze the coexistence of PFASs and PCNs, especially in food samples at trace levels, to ensure food safety. Herein, a novel ß-cyclodextrin (ß-CD) derived fluoro-functionalized covalent triazine-based frameworks named CD-F-CTF was firstly synthesized. This innovative framework effectively combines the porous nature of the covalent organic framework and the host-guest recognition property of ß-CD enabling the simultaneous extraction of PFASs and PCNs. Under the optimal conditions, a simple and rapid method was developed to analyze PFASs and PCNs by solid-phase extraction (SPE) based simultaneous extraction and stepwise elution (SESE) strategy for the first time. When coupled with liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS), this method achieved impressive detection limits for PFASs (0.020 -0.023 ng/g) and PCNs (0.016 -0.075 ng/g). Furthermore, the excellent performance was validated in food samples with recoveries of 76.7-107 % (for PFASs) and 78.0-108 % (for PCNs). This work not only provides a simple and rapid technique for simultaneous monitoring of PFASs and PCNs in food and environmental samples, but also introduces a new idea for the designing novel adsorbents with multiple recognition sites.


Assuntos
Fluorocarbonos , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Naftalenos , Cromatografia Líquida de Alta Pressão/métodos , Extração em Fase Sólida/métodos , Fluorocarbonos/análise
4.
Food Chem ; 447: 139016, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38513494

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are extensively found in foods, posing potential toxicity to humans. Therefore, rapid analysis and monitoring of PFASs in foods are crucial for public health and also a challenge. To detect trace PFASs in foods, construction of sorbents with multiple interactions could be an effective approach. Herein, a cationic-fluorinated covalent organic framework (CF-COF) was prepared by post-modification and used as a magnetic solid-phase extraction adsorbent for adsorption of PFASs. By combining magnetic solid-phase extraction based on CF-COF with liquid chromatography-tandem mass spectrometry (LC - MS/MS), a novel method was developed for determination of eight long-chain PFASs in foods. Under optimized conditions, the method exhibited low detection limits (0.003-0.019 ng/g) and satisfactory recovery rates (73.5-118%) for PFASs. This study introduces a novel idea for the development of adsorbents targeting PFASs, along with a new analytical method for monitoring of PFASs in foods.


Assuntos
Fluorocarbonos , Estruturas Metalorgânicas , Humanos , Espectrometria de Massas em Tandem/métodos , Estruturas Metalorgânicas/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Extração em Fase Sólida/métodos , Fluorocarbonos/análise , Limite de Detecção
5.
J Chromatogr A ; 1728: 465014, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38797135

RESUMO

Developing novel chiral stationary phases (CSPs) with versatility is of great importance in enantiomer separation. This study fabricated a dual-chiral covalent organic framework (PA-CA COF) via successive post-synthetic modifications. The chiral trans-1,2-cyclohexanediamine (CA) and (D)-penicillamine (PA) groups were periodically aligned within nanochannels of the COF, allowing selective recognition of enantiomers through intermolecular interactions. It can be a versatile high-performance liquid chromatography (HPLC) CSP for separating a wide range of enantiomers, including chiral pharmaceutical intermediates and chiral drugs. With separation performance comparable to commercial chiral columns and even greater versatility, the PA-CA COF@SiO2 column held promise for practical applications. Chiral separation results combined with molecular simulation indicated that the mixed mode of PA and CA resulted in the broad separation capability of PA-CA COF. The introduction of the dual-chiral COFs concept opens up a new avenue for chiral recognition and separation, holding great potential for practical enantiomer separation.


Assuntos
Penicilamina , Estereoisomerismo , Cromatografia Líquida de Alta Pressão/métodos , Penicilamina/química , Penicilamina/isolamento & purificação , Cicloexilaminas/química , Cicloexilaminas/isolamento & purificação , Dióxido de Silício/química , Estruturas Metalorgânicas/química
6.
J Hazard Mater ; 472: 134563, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38735186

RESUMO

Persistent organic pollutants (POPs), such as perfluoroalkyl and polyfluoroalkyl substances (PFASs), polychlorinated biphenyls (PCBs), and bisphenols (BPs), have been raising global concerns due to their toxic effects on environment and human health. The monitoring of residues of POPs in seafood is crucial for assessing the accumulation of these contaminants in the study area and mitigating potential risks to human health. However, the diversity and complexity of POPs in seafood present significant challenges for their simultaneous detection. Here, a novel multi-component fluoro-functionalized covalent organic framework (OH-F-COF) was designed as SPE adsorbent for simultaneous extraction POPs. On this basis, the recognition and adsorption mechanisms were investigated by molecular simulation. Due to multiple interactions and large specific surface area, OH-F-COF displayed satisfactory coextraction performance for PFASs, PCBs, and BPs. Under optimized conditions, the OH-F-COF sorbent was employed in a strategy of simultaneous extraction and stepwise elution (SESE), in combination with HPLC-MS/MS and GC-MS method, to effectively determined POPs in seafood collected from coastal areas of China. The method obtained low detection limits for BPs (0.0037 -0.0089 ng/g), PFASs (0.0038 -0.0207 ng/g), and PCBs (0.2308 -0.2499 ng/g), respectively. This approach provided new research ideas for analyzing and controlling multitarget POPs in seafood. ENVIRONMENTAL IMPLICATIONS: Persistent organic pollutants (POPs), such as perfluoroalkyl and polyfluoroalkyl substances (PFASs), polychlorinated biphenyls (PCBs), and bisphenols (BPs), have caused serious hazards to human health and ecosystems. Hence, there is a need to develop a quantitative method that can rapidly detect POPs in environmental and food samples. Herein, a novel multi-component fluorine-functionalized covalent organic skeletons (OH-F-COF) were prepared at room temperature, and served as adsorbent for POPs. The SESE-SPE strategy combined with chromatographic techniques was used to achieve a rapid detection of POPs in sea foods from the coastal provinces of China. This method provides a valuable tool for analyzing POPs in environmental and food samples.


Assuntos
Contaminação de Alimentos , Alimentos Marinhos , Extração em Fase Sólida , Alimentos Marinhos/análise , Extração em Fase Sólida/métodos , Adsorção , Contaminação de Alimentos/análise , Poluentes Químicos da Água/análise , Poluentes Orgânicos Persistentes/química , Estruturas Metalorgânicas/química , Fenóis/análise , Fenóis/isolamento & purificação , Bifenilos Policlorados/análise , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas , Cromatografia Líquida de Alta Pressão , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA