Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(7): 3520-3535, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38333950

RESUMO

This was the first study that examined the effects of oat ß-glucan and inulin on diet-induced nonalcoholic steatohepatitis (NASH) in circadian-disrupted (CD)-male C57BL/6J mice. CD intensified NASH, significantly increasing alanine aminotransferase and upregulating hepatic tumor necrosis factor α (TNFα) and transforming growth factor ß 1 (TGFß1). However, these observations were significantly alleviated by oat ß-glucan and inulin treatments. Compared to CD NASH mice, oat ß-glucan significantly decreased the liver index, aspartate aminotransferase (AST), and insulin. In prebiotic-treated and CD NASH mice, significant negative correlations were found between enrichment of Muribaculaceae bacterium Isolate-036 (Harlan), Muribaculaceae bacterium Isolate-001 (NCI), and Bacteroides ovatus after oat ß-glucan supplementation with TNFα and TGFß1 levels; and enrichment of Muribaculaceae bacterium Isolate-110 (HZI) after inulin supplementation with AST level. In conclusion, oat ß-glucan and inulin exhibited similar antiliver injury, anti-inflammatory, and antifibrotic activities but had no effect on cecal short-chain fatty acids and gut microbiota diversity in CD NASH mice.


Assuntos
Hepatopatia Gordurosa não Alcoólica , beta-Glucanas , Masculino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Inulina/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo
2.
Foods ; 12(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37959133

RESUMO

Gut microbiota has been described as a new 'organ' that interferes with host physiology by its metabolites produced from the utilization and biotransformation of undigested food components. Fu Ling (FL), the sclerotia of fungi Wolfiporia cocos, contains ß-glucan, which is a known natural polysaccharide with strong medicinal efficacy. This study endeavors to evaluate the fermentability of FL and polysaccharides extracted from its sclerotia. An in vitro fermentation of structurally characterized FL and its ß-glucan by human fecal microbiota was conducted. Total bacterial count, pH change, short-chain fatty acid profile and microbiota profile were assessed post-fermentation. FL containing over 70% of ß-(1 → 3) and (1 → 6)-glucans with a low degree of branching of 0.24 could enhance acetic acid (a major microbial metabolite) production. Both FL and its extracted ß-glucan had similar modulation on microbial composition. They enriched Phascolarctobacterium faecium, Bacteroides dorei and Parabacteroides distasonis, all of which are shown to possess anti-inflammatory effects. FL polysaccharide can be utilized as a natural whole food for its potential health benefits to human gut bacteria.

3.
Nutrients ; 15(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37836532

RESUMO

In view of the limited evidence showing anti-obesity effects of synbiotics via modulation of the gut microbiota in humans, a randomized clinical trial was performed. Assessment of the metabolic syndrome traits and profiling of the fecal gut microbiota using 16S rRNA gene sequencing in overweight and obese Hong Kong Chinese individuals before and after dietary intervention with an 8-week increased consumption of fruits and vegetables and/or synbiotic supplementation was conducted. The selected synbiotic contained two probiotics (Lactobacillus acidophilus NCFM and Bifidobacterium lactis HN019) and a prebiotic (polydextrose). Fifty-five overweight or obese individuals were randomized and divided into a synbiotic group (SG; n = 19), a dietary intervention group (DG; n = 18), and a group receiving combined interventions (DSG; n = 18). DSG showed the greatest weight loss effects and number of significant differences in clinical parameters compared to its baseline values-notably, decreases in fasting glucose, insulin, HOMA-IR, and triglycerides and an increase in HDL-cholesterol. DSG lowered Megamonas abundance, which was positively associated with BMI, body fat mass, and trunk fat mass. The results suggested that increasing dietary fiber consumption from fruits and vegetables combined with synbiotic supplementation is more effective than either approach alone in tackling obesity.


Assuntos
Microbioma Gastrointestinal , Síndrome Metabólica , Probióticos , Simbióticos , Humanos , Método Duplo-Cego , População do Leste Asiático , Hong Kong , Síndrome Metabólica/terapia , Obesidade/terapia , Sobrepeso/terapia , RNA Ribossômico 16S , Fibras na Dieta
4.
Database (Oxford) ; 20222022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35849028

RESUMO

The use of probiotics to improve health via the modulation of gut microbiota has gained wide attention. The growing volume of investigations of probiotic microorganisms and commercialized probiotic products has created the need for a database to organize the health-promoting functions driven by probiotics reported in academic articles, clinical trials and patents. We constructed ProBioQuest to collect up-to-date literature related to probiotics from PubMed.gov, ClinicalTrials.gov and PatentsView. More than 2.8 million articles have been collected. Automated information technology-assisted procedures enabled us to collect the data continuously, providing the most up-to-date information. Statistical functions and semantic analyses are provided on the website as an advanced search engine, which contributes to the semantic tool of this database for information search and analyses. The semantic analytical output provides categorized search results and functions to enhance further analysis. A keyword bank is included which can display multiple tables of contents. Users can select keywords from different displayed categories to achieve easily filtered searches. Additional information on the searched items can be browsed via the link-out function. ProBioQuest is not only useful to scientists and health professionals but also to dietary supplement manufacturers and the general public. In this paper, the method we used to build this database-web system is described. Applications of ProBioQuest for several literature-based analyses of probiotics are included as examples of the various uses of this search engine. ProBioQuest can be accessed free of charge at http://kwanlab.bio.cuhk.edu.hk/PBQ/. Database URL: http://kwanlab.bio.cuhk.edu.hk/PBQ/.


Assuntos
Probióticos , Semântica , Ensaios Clínicos como Assunto , Bases de Dados Factuais , Probióticos/uso terapêutico , PubMed , Ferramenta de Busca
5.
PLoS One ; 14(5): e0209812, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31083677

RESUMO

Living fungal mycelium with abolished ability to form fruiting bodies is a self-healing substance, which is particularly valuable for further engineering and development as materials sensing environmental changes and secreting signals. Suppression of fruiting body formation is also a useful tool for maintaining the stability of a mycelium-based material with ease and lower cost. The objective of this study was to provide a biochemical solution to regulate the fruiting body formation, which may replace heat killing of mycelium in practice. The concentrations of glycogen synthase kinase-3 (GSK-3) inhibitors, such as lithium chloride or CHIR99021 trihydrochloride, were found to directly correlate with the development of fruiting bodies in the mushroom forming fungi such as Coprinopsis cinerea and Pleurotus djamor. Sensitive windows to these inhibitors throughout the fungal life cycle were also identified. We suggest the inclusion of GSK-3 inhibitors in the cultivation recipes for inhibiting fruiting body formation and regulating mycelium growth. This is the first report of using a GSK-3 inhibitor to suppress fruiting body formation in living fungal mycelium-based materials. It provides an innovative strategy for easy, reliable, and low cost maintenance of materials containing living fungal mycelium.


Assuntos
Materiais Biocompatíveis/metabolismo , Carpóforos/fisiologia , Fungos/fisiologia , Agaricales , Biomarcadores , Inibidores Enzimáticos/farmacologia , Carpóforos/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Cloreto de Lítio/farmacologia , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA