Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
Cell ; 186(1): 209-229.e26, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608654

RESUMO

Transcription factors (TFs) regulate gene programs, thereby controlling diverse cellular processes and cell states. To comprehensively understand TFs and the programs they control, we created a barcoded library of all annotated human TF splice isoforms (>3,500) and applied it to build a TF Atlas charting expression profiles of human embryonic stem cells (hESCs) overexpressing each TF at single-cell resolution. We mapped TF-induced expression profiles to reference cell types and validated candidate TFs for generation of diverse cell types, spanning all three germ layers and trophoblasts. Targeted screens with subsets of the library allowed us to create a tailored cellular disease model and integrate mRNA expression and chromatin accessibility data to identify downstream regulators. Finally, we characterized the effects of combinatorial TF overexpression by developing and validating a strategy for predicting combinations of TFs that produce target expression profiles matching reference cell types to accelerate cellular engineering efforts.


Assuntos
Diferenciação Celular , Fatores de Transcrição , Humanos , Cromatina , Regulação da Expressão Gênica , Células-Tronco Embrionárias Humanas/metabolismo , Fatores de Transcrição/metabolismo , Atlas como Assunto
2.
Cell ; 186(18): 3882-3902.e24, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37597510

RESUMO

Inflammation can trigger lasting phenotypes in immune and non-immune cells. Whether and how human infections and associated inflammation can form innate immune memory in hematopoietic stem and progenitor cells (HSPC) has remained unclear. We found that circulating HSPC, enriched from peripheral blood, captured the diversity of bone marrow HSPC, enabling investigation of their epigenomic reprogramming following coronavirus disease 2019 (COVID-19). Alterations in innate immune phenotypes and epigenetic programs of HSPC persisted for months to 1 year following severe COVID-19 and were associated with distinct transcription factor (TF) activities, altered regulation of inflammatory programs, and durable increases in myelopoiesis. HSPC epigenomic alterations were conveyed, through differentiation, to progeny innate immune cells. Early activity of IL-6 contributed to these persistent phenotypes in human COVID-19 and a mouse coronavirus infection model. Epigenetic reprogramming of HSPC may underlie altered immune function following infection and be broadly relevant, especially for millions of COVID-19 survivors.


Assuntos
COVID-19 , Memória Epigenética , Síndrome de COVID-19 Pós-Aguda , Animais , Humanos , Camundongos , Diferenciação Celular , COVID-19/imunologia , Modelos Animais de Doenças , Células-Tronco Hematopoéticas , Inflamação/genética , Imunidade Treinada , Monócitos/imunologia , Síndrome de COVID-19 Pós-Aguda/genética , Síndrome de COVID-19 Pós-Aguda/imunologia , Síndrome de COVID-19 Pós-Aguda/patologia
3.
Nat Immunol ; 25(8): 1395-1410, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39009838

RESUMO

Interleukin-17 (IL-17)-producing helper T (TH17) cells are heterogenous and consist of nonpathogenic TH17 (npTH17) cells that contribute to tissue homeostasis and pathogenic TH17 (pTH17) cells that mediate tissue inflammation. Here, we characterize regulatory pathways underlying TH17 heterogeneity and discover substantial differences in the chromatin landscape of npTH17 and pTH17 cells both in vitro and in vivo. Compared to other CD4+ T cell subsets, npTH17 cells share accessible chromatin configurations with regulatory T cells, whereas pTH17 cells exhibit features of both npTH17 cells and type 1 helper T (TH1) cells. Integrating single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) and single-cell RNA sequencing (scRNA-seq), we infer self-reinforcing and mutually exclusive regulatory networks controlling different cell states and predicted transcription factors regulating TH17 cell pathogenicity. We validate that BACH2 promotes immunomodulatory npTH17 programs and restrains proinflammatory TH1-like programs in TH17 cells in vitro and in vivo. Furthermore, human genetics implicate BACH2 in multiple sclerosis. Overall, our work identifies regulators of TH17 heterogeneity as potential targets to mitigate autoimmunity.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Cromatina , Células Th17 , Células Th17/imunologia , Células Th17/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Animais , Cromatina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/genética , Camundongos Knockout , Células Th1/imunologia , Humanos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Inflamação/imunologia , Inflamação/genética , Análise de Célula Única , Esclerose Múltipla/imunologia , Esclerose Múltipla/genética , Feminino
4.
Cell ; 183(4): 1103-1116.e20, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33098772

RESUMO

Cell differentiation and function are regulated across multiple layers of gene regulation, including modulation of gene expression by changes in chromatin accessibility. However, differentiation is an asynchronous process precluding a temporal understanding of regulatory events leading to cell fate commitment. Here we developed simultaneous high-throughput ATAC and RNA expression with sequencing (SHARE-seq), a highly scalable approach for measurement of chromatin accessibility and gene expression in the same single cell, applicable to different tissues. Using 34,774 joint profiles from mouse skin, we develop a computational strategy to identify cis-regulatory interactions and define domains of regulatory chromatin (DORCs) that significantly overlap with super-enhancers. During lineage commitment, chromatin accessibility at DORCs precedes gene expression, suggesting that changes in chromatin accessibility may prime cells for lineage commitment. We computationally infer chromatin potential as a quantitative measure of chromatin lineage-priming and use it to predict cell fate outcomes. SHARE-seq is an extensible platform to study regulatory circuitry across diverse cells in tissues.


Assuntos
Cromatina/metabolismo , Perfilação da Expressão Gênica , RNA/genética , Análise de Célula Única , Animais , Diferenciação Celular/genética , Linhagem Celular , Linhagem da Célula/genética , Elementos Facilitadores Genéticos/genética , Feminino , Regulação da Expressão Gênica , Histonas/metabolismo , Camundongos Endogâmicos C57BL , Processamento de Proteína Pós-Traducional , RNA/metabolismo
6.
Mol Cell ; 83(8): 1350-1367.e7, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37028419

RESUMO

The mammalian SWI/SNF (mSWI/SNF or BAF) family of chromatin remodeling complexes play critical roles in regulating DNA accessibility and gene expression. The three final-form subcomplexes-cBAF, PBAF, and ncBAF-are distinct in biochemical componentry, chromatin targeting, and roles in disease; however, the contributions of their constituent subunits to gene expression remain incompletely defined. Here, we performed Perturb-seq-based CRISPR-Cas9 knockout screens targeting mSWI/SNF subunits individually and in select combinations, followed by single-cell RNA-seq and SHARE-seq. We uncovered complex-, module-, and subunit-specific contributions to distinct regulatory networks and defined paralog subunit relationships and shifted subcomplex functions upon perturbations. Synergistic, intra-complex genetic interactions between subunits reveal functional redundancy and modularity. Importantly, single-cell subunit perturbation signatures mapped across bulk primary human tumor expression profiles both mirror and predict cBAF loss-of-function status in cancer. Our findings highlight the utility of Perturb-seq to dissect disease-relevant gene regulatory impacts of heterogeneous, multi-component master regulatory complexes.


Assuntos
Montagem e Desmontagem da Cromatina , Neoplasias , Animais , Humanos , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatina/genética , Mamíferos/metabolismo
7.
Nature ; 616(7955): 113-122, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36922587

RESUMO

Emerging spatial technologies, including spatial transcriptomics and spatial epigenomics, are becoming powerful tools for profiling of cellular states in the tissue context1-5. However, current methods capture only one layer of omics information at a time, precluding the possibility of examining the mechanistic relationship across the central dogma of molecular biology. Here, we present two technologies for spatially resolved, genome-wide, joint profiling of the epigenome and transcriptome by cosequencing chromatin accessibility and gene expression, or histone modifications (H3K27me3, H3K27ac or H3K4me3) and gene expression on the same tissue section at near-single-cell resolution. These were applied to embryonic and juvenile mouse brain, as well as adult human brain, to map how epigenetic mechanisms control transcriptional phenotype and cell dynamics in tissue. Although highly concordant tissue features were identified by either spatial epigenome or spatial transcriptome we also observed distinct patterns, suggesting their differential roles in defining cell states. Linking epigenome to transcriptome pixel by pixel allows the uncovering of new insights in spatial epigenetic priming, differentiation and gene regulation within the tissue architecture. These technologies are of great interest in life science and biomedical research.


Assuntos
Cromatina , Epigenoma , Mamíferos , Transcriptoma , Animais , Humanos , Camundongos , Cromatina/genética , Cromatina/metabolismo , Epigênese Genética , Epigenômica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Mamíferos/genética , Histonas/química , Histonas/metabolismo , Análise de Célula Única , Especificidade de Órgãos , Encéfalo/embriologia , Encéfalo/metabolismo , Envelhecimento/genética
8.
Immunity ; 51(4): 696-708.e9, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618654

RESUMO

Signaling abnormalities in immune responses in the small intestine can trigger chronic type 2 inflammation involving interaction of multiple immune cell types. To systematically characterize this response, we analyzed 58,067 immune cells from the mouse small intestine by single-cell RNA sequencing (scRNA-seq) at steady state and after induction of a type 2 inflammatory reaction to ovalbumin (OVA). Computational analysis revealed broad shifts in both cell-type composition and cell programs in response to the inflammation, especially in group 2 innate lymphoid cells (ILC2s). Inflammation induced the expression of exon 5 of Calca, which encodes the alpha-calcitonin gene-related peptide (α-CGRP), in intestinal KLRG1+ ILC2s. α-CGRP antagonized KLRG1+ ILC2s proliferation but promoted IL-5 expression. Genetic perturbation of α-CGRP increased the proportion of intestinal KLRG1+ ILC2s. Our work highlights a model where α-CGRP-mediated neuronal signaling is critical for suppressing ILC2 expansion and maintaining homeostasis of the type 2 immune machinery.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Inflamação/imunologia , Intestinos/imunologia , Linfócitos/imunologia , Neuropeptídeos/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Células Cultivadas , Biologia Computacional , Imunidade Inata , Interleucina-5/genética , Interleucina-5/metabolismo , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Neuropeptídeos/genética , Receptores Imunológicos/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Células Th2/imunologia , Transcriptoma , Regulação para Cima
9.
Nature ; 609(7926): 375-383, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35978191

RESUMO

Cellular function in tissue is dependent on the local environment, requiring new methods for spatial mapping of biomolecules and cells in the tissue context1. The emergence of spatial transcriptomics has enabled genome-scale gene expression mapping2-5, but the ability to capture spatial epigenetic information of tissue at the cellular level and genome scale is lacking. Here we describe a method for spatially resolved chromatin accessibility profiling of tissue sections using next-generation sequencing (spatial-ATAC-seq) by combining in situ Tn5 transposition chemistry6 and microfluidic deterministic barcoding5. Profiling mouse embryos using spatial-ATAC-seq delineated tissue-region-specific epigenetic landscapes and identified gene regulators involved in the development of the central nervous system. Mapping the accessible genome in the mouse and human brain revealed the intricate arealization of brain regions. Applying spatial-ATAC-seq to tonsil tissue resolved the spatially distinct organization of immune cell types and states in lymphoid follicles and extrafollicular zones. This technology progresses spatial biology by enabling spatially resolved chromatin accessibility profiling to improve our understanding of cell identity, cell state and cell fate decision in relation to epigenetic underpinnings in development and disease.


Assuntos
Montagem e Desmontagem da Cromatina , Sequenciamento de Cromatina por Imunoprecipitação , Cromatina , Animais , Encéfalo/metabolismo , Diferenciação Celular , Linhagem da Célula , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Epigenômica , Perfilação da Expressão Gênica , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Camundongos , Tonsila Palatina/citologia , Tonsila Palatina/imunologia
10.
Nature ; 592(7854): 428-432, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33790465

RESUMO

Chronic, sustained exposure to stressors can profoundly affect tissue homeostasis, although the mechanisms by which these changes occur are largely unknown. Here we report that the stress hormone corticosterone-which is derived from the adrenal gland and is the rodent equivalent of cortisol in humans-regulates hair follicle stem cell (HFSC) quiescence and hair growth in mice. In the absence of systemic corticosterone, HFSCs enter substantially more rounds of the regeneration cycle throughout life. Conversely, under chronic stress, increased levels of corticosterone prolong HFSC quiescence and maintain hair follicles in an extended resting phase. Mechanistically, corticosterone acts on the dermal papillae to suppress the expression of Gas6, a gene that encodes the secreted factor growth arrest specific 6. Restoring Gas6 expression overcomes the stress-induced inhibition of HFSC activation and hair growth. Our work identifies corticosterone as a systemic inhibitor of HFSC activity through its effect on the niche, and demonstrates that the removal of such inhibition drives HFSCs into frequent regeneration cycles, with no observable defects in the long-term.


Assuntos
Corticosterona/farmacologia , Folículo Piloso/citologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/cirurgia , Adrenalectomia , Animais , Divisão Celular/efeitos dos fármacos , Feminino , Folículo Piloso/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia , Transcriptoma , Regulação para Cima
11.
Nature ; 577(7792): 676-681, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31969699

RESUMO

Empirical and anecdotal evidence has associated stress with accelerated hair greying (formation of unpigmented hairs)1,2, but so far there has been little scientific validation of this link. Here we report that, in mice, acute stress leads to hair greying through the fast depletion of melanocyte stem cells. Using a combination of adrenalectomy, denervation, chemogenetics3,4, cell ablation and knockout of the adrenergic receptor specifically in melanocyte stem cells, we find that the stress-induced loss of melanocyte stem cells is independent of immune attack or adrenal stress hormones. Instead, hair greying results from activation of the sympathetic nerves that innervate the melanocyte stem-cell niche. Under conditions of stress, the activation of these sympathetic nerves leads to burst release of the neurotransmitter noradrenaline (also known as norepinephrine). This causes quiescent melanocyte stem cells to proliferate rapidly, and is followed by their differentiation, migration and permanent depletion from the niche. Transient suppression of the proliferation of melanocyte stem cells prevents stress-induced hair greying. Our study demonstrates that neuronal activity that is induced by acute stress can drive a rapid and permanent loss of somatic stem cells, and illustrates an example in which the maintenance of somatic stem cells is directly influenced by the overall physiological state of the organism.


Assuntos
Vias Autônomas/fisiopatologia , Cor de Cabelo/fisiologia , Melanócitos/patologia , Nicho de Células-Tronco/fisiologia , Células-Tronco/patologia , Estresse Psicológico/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Glândulas Suprarrenais/metabolismo , Adrenalectomia , Animais , Vias Autônomas/patologia , Proliferação de Células , Células Cultivadas , Denervação , Feminino , Humanos , Masculino , Melanócitos/citologia , Melanócitos/metabolismo , Camundongos , Norepinefrina/metabolismo , Trauma Psicológico/patologia , Trauma Psicológico/fisiopatologia , Receptores Adrenérgicos beta 2/deficiência , Receptores Adrenérgicos beta 2/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Estresse Psicológico/patologia , Sistema Nervoso Simpático/patologia
12.
Nano Lett ; 24(15): 4571-4579, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38565076

RESUMO

Efficient pure-red emission light-emitting diodes (LEDs) are essential for high-definition displays, yet achieving pure-red emission is hindered by challenges like phase segregation and spectral instability when using halide mixing. Additionally, strongly confined quantum dots (QDs) produced through traditional hot-injection methods face byproduct contamination due to poor solubility of metal halide salts in the solvent octadecene (ODE) at low temperatures. Herein, we introduced a novel method using a benzene-series strongly electrostatic potential solvent instead of ODE to prevent PbI2 intermediates and promote their dissolution into [PbI3]-. Increasing methyl groups on benzene yields precisely sized (4.4 ± 0.1 nm) CsPbI3 QDs with exceptional properties: a narrow 630 nm PL peak with photoluminescence quantum yield (PLQY) of 97%. Sequential ligand post-treatment optimizes optical and electrical performance of QDs. PeLEDs based on optimized QDs achieve pure-red EL (CIE: 0.700, 0.290) approaching Rec. 2020 standards, with an EQE of 25.2% and T50 of 120 min at initial luminance of 107 cd/m2.

13.
Nat Methods ; 18(11): 1352-1362, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34711971

RESUMO

Charting an organs' biological atlas requires us to spatially resolve the entire single-cell transcriptome, and to relate such cellular features to the anatomical scale. Single-cell and single-nucleus RNA-seq (sc/snRNA-seq) can profile cells comprehensively, but lose spatial information. Spatial transcriptomics allows for spatial measurements, but at lower resolution and with limited sensitivity. Targeted in situ technologies solve both issues, but are limited in gene throughput. To overcome these limitations we present Tangram, a method that aligns sc/snRNA-seq data to various forms of spatial data collected from the same region, including MERFISH, STARmap, smFISH, Spatial Transcriptomics (Visium) and histological images. Tangram can map any type of sc/snRNA-seq data, including multimodal data such as those from SHARE-seq, which we used to reveal spatial patterns of chromatin accessibility. We demonstrate Tangram on healthy mouse brain tissue, by reconstructing a genome-wide anatomically integrated spatial map at single-cell resolution of the visual and somatomotor areas.


Assuntos
Encéfalo/metabolismo , Cromatina/genética , Aprendizado Profundo , Regulação da Expressão Gênica , Análise de Célula Única/métodos , Software , Transcriptoma , Animais , Cromatina/química , Cromatina/metabolismo , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA-Seq , Sequências Reguladoras de Ácido Nucleico
14.
BMC Cancer ; 24(1): 559, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702644

RESUMO

In contrast to the decreasing trends in developed countries, the incidence and mortality rates of cervical squamous cell carcinoma in China have increased significantly. The screening and identification of reliable biomarkers and candidate drug targets for cervical squamous cell carcinoma are urgently needed to improve the survival rate and quality of life of patients. In this study, we demonstrated that the expression of MUC1 was greater in neoplastic tissues than in non-neoplastic tissues of the cervix, and cervical squamous cell carcinoma patients with high MUC1 expression had significantly worse overall survival than did those with low MUC1 expression, indicating its potential for early diagnosis of cervical squamous cell carcinoma. Next, we explored the regulatory mechanism of MUC1 in cervical squamous cell carcinoma. MUC1 could upregulate ITGA2 and ITGA3 expression via ERK phosphorylation, promoting the proliferation and metastasis of cervical cancer cells. Further knockdown of ITGA2 and ITGA3 significantly inhibited the tumorigenesis of cervical cancer cells. Moreover, we designed a combination drug regimen comprising MUC1-siRNA and a novel ERK inhibitor in vivo and found that the combination of these drugs achieved better results in animals with xenografts than did MUC1 alone. Overall, we discovered a novel regulatory pathway, MUC1/ERK/ITGA2/3, in cervical squamous cell carcinoma that may serve as a potential biomarker and therapeutic target in the future.


MUC1 is overexpressed in cervical squamous cell carcinoma. MUC1 regulates ERK phosphorylation, and subsequently upregulates ITGA2 and ITGA3 expression to promote tumorigenesis in cervical squamous cell carcinoma. A combination drug regimen targeting MUC1 and ERK achieved better results compared than MUC1 alone.


Assuntos
Carcinoma de Células Escamosas , Proliferação de Células , Integrina alfa2 , Integrina alfa3 , Mucina-1 , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Feminino , Integrina alfa2/metabolismo , Integrina alfa2/genética , Animais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Mucina-1/metabolismo , Mucina-1/genética , Camundongos , Fosforilação , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Ensaios Antitumorais Modelo de Xenoenxerto , Sistema de Sinalização das MAP Quinases , Camundongos Nus , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
15.
Crit Rev Food Sci Nutr ; : 1-23, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821105

RESUMO

Edible mushroom polysaccharides (EMPs) as a natural macromolecular carbohydrate have a very complex structure and composition. EMPs are considered ideal candidates for developing healthy products and functional foods and have received significant research attention due to their unique physiological activities such as immunomodulatory, anti-inflammatory, anti-tumor/cancer, gut microbiota regulation, metabolism improvement, and nervous system protection. The structure and monosaccharide composition of edible mushroom polysaccharides have an unknown relationship with their functional activity, which has not been widely studied. Therefore, we summarized the preparation techniques of EMPs and discussed the association between functional activity, preparation methods, structure and composition of EMPs, laying a theoretical foundation for the personalized nutritional achievements of EMP. We also establish the foundation for the further investigation and application of EMPs as novel functional foods and healthy products.

16.
Phys Chem Chem Phys ; 26(11): 8945-8951, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38436414

RESUMO

Two-dimensional (2D) valley materials are promising materials for writing and storing information. The search for 2D materials with large valley splitting is essential for the development of spintronics and valley electronics. In this study, we theoretically design 2D W2NSCl MXenes with large valley splitting based on first-principle calculations. Due to the strong spin-orbit coupling (SOC) and the broken inversion symmetry, the W2NSCl monolayer exhibits valley splitting values of 491 meV and 83 meV at K/K' of the valence and conduction bands, respectively. The valley splitting of W2NSCl is robust to biaxial strain. Because of the broken mirror symmetry of W2NSCl, there is a Rashba effect at Γ with a Rashba parameter of 1.019 V Å. Based on the maximum localization of the Wannier function, we found the non-zero Berry curvature at K/K'. Furthermore, the non-zero Berry curvature at the K/K' valley increases monotonically with an external strain from -4% to 4%. Our finding shows that W2NSCl is a candidate material for valley electronics and spintronics applications.

17.
J Obstet Gynaecol Can ; 46(4): 102342, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38176679

RESUMO

OBJECTIVES: To investigate the incidence of Y chromosome microdeletions in male newborns conceived by intracytoplasmic sperm injection (ICSI), in vitro fertilization (IVF), and natural conception (NC). METHODS: A total of 186 male newborns were recruited, including 35 conceived by ICSI, 37 conceived by IVF, and 114 conceived naturally. DNA was extracted from umbilical cord blood after birth. The Yq genetic status of the newborns was determined according to 18 Y-specific sequence tagging sites (STS) markers covering 3 azoospermia factor (AZF) sub-regions and internal control sequences. RESULTS: Partial AZF microdeletions were identified in 8 of 35 (22.9%) ICSI newborns, 4 of 37 (10.8%) IVF newborns, and 1 of 114 (0.9%) NC newborns. There was a statistically significant difference in the proportion of newborns with partial Y chromosome microdeletions between the ICSI, IVF, and NC groups. When analyzed individually, only the SY114 and SY152 STS markers showed a statistically significant difference in incidence between the 3 cohorts. CONCLUSIONS: Our study indicates that the population of male children conceived through assisted reproductive technologies (ART), particularly ICSI, is at an increased risk of genetic defect in the form of partial Y chromosome microdeletions. The growing population of ART-conceived children emphasizes the importance of studying the genetic repercussions of these procedures regarding the future fertility of males conceived in vitro.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Y , Sangue Fetal , Infertilidade Masculina , Aberrações dos Cromossomos Sexuais , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual , Injeções de Esperma Intracitoplásmicas , Humanos , Masculino , Cromossomos Humanos Y/genética , Recém-Nascido , Sangue Fetal/química , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/genética , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/sangue , Infertilidade Masculina/genética , Fertilização in vitro , Adulto , Feminino
18.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33622787

RESUMO

HLA-C arose during evolution of pregnancy in the great apes 10 to 15 million years ago. It has a dual function on placental extravillous trophoblasts (EVTs) as it contributes to both tolerance and immunity at the maternal-fetal interface. The mode of its regulation is of considerable interest in connection with the biology of pregnancy and pregnancy abnormalities. First-trimester primary EVTs in which HLA-C is highly expressed, as well as JEG3, an EVT model cell line, were employed. Single-cell RNA-seq data and quantitative PCR identified high expression of the transcription factor ELF3 in those cells. Chromatin immunoprecipitation (ChIP)-PCR confirmed that both ELF3 and MED1 bound to the proximal HLA-C promoter region. However, binding of RFX5 to this region was absent or severely reduced, and the adjacent HLA-B locus remained closed. Expression of HLA-C was inhibited by ELF3 small interfering RNAs (siRNAs) and by wrenchnolol treatment. Wrenchnolol is a cell-permeable synthetic organic molecule that mimics ELF3 and is relatively specific for binding to ELF3's coactivator, MED23, as our data also showed in JEG3. Moreover, the ELF3 gene is regulated by a superenhancer that spans more than 5 Mb, identified by assay for transposase-accessible chromatin using sequencing (ATAC-seq), as well as by its sensitivity to (+)-JQ1 (inhibitor of BRD4). ELF3 bound to its own promoter, thus creating an autoregulatory feedback loop that establishes expression of ELF3 and HLA-C in trophoblasts. Wrenchnolol blocked binding of MED23 to ELF3, thus disrupting the positive-feedback loop that drives ELF3 expression, with down-regulation of HLA-C expression as a consequence.


Assuntos
Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Retroalimentação Fisiológica , Antígenos HLA-C/genética , Proteínas Proto-Oncogênicas c-ets/genética , Fatores de Transcrição/genética , Trofoblastos/imunologia , Aborto Legal , Adamantano/farmacologia , Azepinas/farmacologia , Linhagem Celular , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/imunologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/imunologia , Antígenos HLA-B/genética , Antígenos HLA-B/imunologia , Antígenos HLA-C/imunologia , Humanos , Imunidade Materno-Adquirida , Indóis/farmacologia , Complexo Mediador/genética , Complexo Mediador/imunologia , Subunidade 1 do Complexo Mediador/genética , Subunidade 1 do Complexo Mediador/imunologia , Gravidez , Primeiro Trimestre da Gravidez , Cultura Primária de Células , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-ets/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-ets/imunologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Fatores de Transcrição de Fator Regulador X/genética , Fatores de Transcrição de Fator Regulador X/imunologia , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/imunologia , Triazóis/farmacologia , Trofoblastos/citologia , Trofoblastos/efeitos dos fármacos
19.
Pestic Biochem Physiol ; 201: 105874, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685243

RESUMO

In insects, chemosensory proteins (CSPs) play an important role in the perception of the external environment and have been widely used for protein-binding characterization. Riptortus pedestris has received increased attention as a potential cause of soybean staygreen syndrome in recent years. In this study, we found that RpedCSP4 expression in the antennae of adult R. pedestris increased with age, with no significant difference in expression level observed between males and females, as determined through quantitative real-time polymerase chain reaction (qRT-PCR). Subsequently, we investigated the ability of RpedCSP4 to bind various ligands (five aggregated pheromone components and 13 soybean volatiles) using a prokaryotic expression system and fluorescence competitive binding assays. We found that RpedCSP4 binds to three aggregated pheromone components of R. pedestris, namely, ((E)-2-hexenyl (Z)-3-hexenoate (E2Z3), (E)-2-hexenyl (E)-2-hexenoate (E2E2), and (E)-2-hexenyl hexenoate (E2HH)), and that its binding capacities are most stable under acidic condition. Finally, the structure and protein-ligand interactions of RpedCSP4 were further analyzed via homology modeling, molecular docking, and targeted mutagenesis experiments. The L29A mutant exhibited a loss of binding ability to these three aggregated pheromone components. Our results show that the olfactory function of RpedCSP4 provides new insights into the binding mechanism of RpedCSPs to aggregation pheromones and contributes to discover new target candidates that will provide a theoretical basis for future population control of R. pedestris.


Assuntos
Proteínas de Insetos , Feromônios , Animais , Feromônios/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Masculino , Feminino , Ligação Proteica , Heterópteros/metabolismo , Heterópteros/genética
20.
Mikrochim Acta ; 191(5): 231, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38565795

RESUMO

Blood stasis syndrome (BSS) has persistent health risks; however, its pathogenesis remains elusive. This obscurity may result in missed opportunities for early intervention, increased susceptibility to chronic diseases, and reduced accuracy and efficacy of treatments. Metabolomics, employing the matrix-assisted laser desorption/ionization (MALDI) strategy, presents distinct advantages in biomarker discovery and unraveling molecular mechanisms. Nonetheless, the challenge is to develop efficient matrices for high-sensitivity and high-throughput analysis of diverse potential biomarkers in complex biosamples. This work utilized nitrogen-doped porous transition metal carbides and nitrides (NP-MXene) as a MALDI matrix to delve into the molecular mechanisms underlying BSS pathogenesis. Structural optimization yielded heightened peak sensitivity (by 1.49-fold) and increased peak numbers (by 1.16-fold) in clinical biosamples. Validation with animal models and clinical serum biosamples revealed significant differences in metabolic fingerprints between BSS and control groups, achieving an overall diagnostic efficacy of 0.905 (95% CI, 0.76-0.979). Prostaglandin F2α was identified as a potential biomarker (diagnostics efficiency of 0.711, specificity = 0.7, sensitivity = 0.6), and pathway enrichment analysis disclosed disruptions in arachidonic acid metabolism in BSS. This innovative approach not only advances comprehension of BSS pathogenesis, but also provides valuable insights for personalized treatment and diagnostic precision.


Assuntos
Medicamentos de Ervas Chinesas , Animais , Dinoprosta , Retroalimentação , Nitrogênio , Porosidade , Compostos Orgânicos , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA