Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 24(16): 3979-85, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24986660
2.
Antimicrob Agents Chemother ; 54(5): 1981-7, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20176894

RESUMO

The current standard of care for hepatitis C virus (HCV) infection, pegylated alpha interferon in combination with ribavirin, has a limited response rate and adverse side effects. Drugs targeting viral proteins are in clinical development, but they suffer from the development of high viral resistance. The inhibition of cellular proteins that are essential for viral amplification is thought to have a higher barrier to the emergence of resistance. Three cyclophilin inhibitors, the cyclosporine analogs DEBIO-025, SCY635, and NIM811, have shown promising results for the treatment of HCV infection in early clinical trials. In this study, we investigated the frequency and mechanism of resistance to cyclosporine (CsA), NIM811, and a structurally unrelated cyclophilin inhibitor, SFA-1, in replicon-containing Huh7 cells. Cross-resistance between all clones was observed. NIM811-resistant clones were selected only after obtaining initial resistance to either CsA or SFA-1. The time required to select resistance against cyclophilin inhibitors was significantly longer than that required for resistance selection against viral protein inhibitors, and the achievable resistance level was substantially lower. Resistance to cyclophilin inhibitors was mediated by amino acid substitutions in NS3, NS5A, and NS5B, with NS5A mutations conferring the majority of resistance. Mutation D320E in NS5A mediated most of the resistance conferred by NS5A. Taken together, the results indicate that there is a very low frequency and level of resistance to cyclophilin-binding drugs mediated by amino acid substitutions in three viral proteins. The interaction of cyclophilin with NS5A seems to be the most critical, since the NS5A mutations have the largest impact on resistance.


Assuntos
Ciclofilinas/antagonistas & inibidores , Ciclosporina/farmacologia , Farmacorresistência Viral/fisiologia , Hepacivirus/genética , Replicon/genética , Antivirais/farmacologia , Linhagem Celular , Ciclosporinas/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/crescimento & desenvolvimento , Hepacivirus/metabolismo , Humanos , Lactonas/farmacologia , Mutagênese Sítio-Dirigida , RNA Viral/metabolismo , Compostos de Espiro/farmacologia , Transfecção , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
3.
Antimicrob Agents Chemother ; 52(9): 3267-75, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18591281

RESUMO

Chronic hepatitis C virus (HCV) infection remains a major global health burden while current interferon-based therapy is suboptimal. Efforts to develop more effective antiviral agents mainly focus on two viral targets: NS3-4A protease and NS5B polymerase. However, resistant mutants against these viral specific inhibitors emerge quickly both in vitro and in patients, particularly in the case of monotherapy. An alternative and complementary strategy is to target host factors such as cyclophilins that are also essential for viral replication. Future HCV therapies will most likely be combinations of multiple drugs of different mechanisms to maximize antiviral activity and to suppress the emergence of resistance. Here, the effects of combining a host cyclophilin inhibitor NIM811 with other viral specific inhibitors were investigated in vitro using HCV replicon. All of the combinations led to more pronounced antiviral effects than any single agent, with no significant increase of cytotoxicity. Moreover, the combination of NIM811 with a nucleoside (NM107) or a non-nucleoside (thiophene-2-carboxylic acid) polymerase inhibitor was synergistic, while the combination with a protease inhibitor (BILN2061) was additive. Resistant clones were selected in vitro with these inhibitors. Interestingly, it was much more difficult to develop resistance against NIM811 than viral specific inhibitors. No cross-resistance was observed among these inhibitors. Most notably, NIM811 was highly effective in blocking the emergence of resistance when used in combination with viral protease or polymerase inhibitors. Taken together, these results illustrate the significant advantages of combining inhibitors targeting both viral and host factors as key components of future HCV therapies.


Assuntos
Antivirais/farmacologia , Ciclosporina/farmacologia , Farmacorresistência Viral/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Inibidores de Proteases/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Antivirais/química , Linhagem Celular , Ciclofilinas/antagonistas & inibidores , Ciclosporina/química , Sinergismo Farmacológico , Quimioterapia Combinada , Hepacivirus/enzimologia , Hepacivirus/fisiologia , Humanos , Inibidores de Proteases/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos
4.
Antimicrob Agents Chemother ; 50(9): 2976-82, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16940091

RESUMO

Host factors involved in viral replication are potentially attractive antiviral targets that are complementary to specific inhibitors of viral enzymes, since resistant mutations against the latter are likely to emerge during long-term treatment. It has been reported recently that cyclosporine, which binds to a family of cellular proteins, cyclophilins, inhibits hepatitis C virus (HCV) replication in vitro. Here, the activities of various cyclosporine derivatives were evaluated in the HCV replicon system. There was a strong correlation between the anti-HCV activity and cyclophilin-binding affinity of these compounds. Of these, NIM811 has been selected as a therapeutic candidate for HCV infection, since it binds to cyclophilins with higher affinity than cyclosporine but is devoid of the significant immunosuppressive activity associated with cyclosporine. NIM811 induced a concentration-dependent reduction of HCV RNA in the replicon cells with a 50% inhibitory concentration of 0.66 microM at 48 h. Furthermore, a greater than three-log(10) viral RNA reduction was achieved after treating the cells with as little as 1 microM of NIM811 for 9 days. In addition, the combination of NIM811 with alpha interferon significantly enhanced anti-HCV activities without causing any increase of cytotoxicity. Taken together, these promising in vitro data warrant clinical investigation of NIM811, an inhibitor of novel mechanism, for the treatment of hepatitis C.


Assuntos
Ciclofilinas/antagonistas & inibidores , Ciclosporina/farmacologia , Hepacivirus/efeitos dos fármacos , Interferon-alfa/farmacologia , Replicação Viral/efeitos dos fármacos , Hepacivirus/enzimologia , Hepacivirus/fisiologia , Humanos , RNA Viral/genética , RNA Viral/metabolismo , Replicon/efeitos dos fármacos
5.
J Biol Chem ; 280(44): 36784-91, 2005 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-16087668

RESUMO

VX-950 is a potent, small molecule, peptidomimetic inhibitor of the hepatitis C virus (HCV) NS3.4A serine protease and has recently been shown to possess antiviral activity in a phase I trial in patients chronically infected with genotype 1 HCV. In a previous study, we described in vitro resistance mutations against either VX-950 or another HCV NS3.4A protease inhibitor, BILN 2061. Single amino acid substitutions that conferred drug resistance (distinct for either inhibitor) were identified in the HCV NS3 serine protease domain. The dominant VX-950-resistant mutant (A156S) remains sensitive to BILN 2061. The major BILN 2061-resistant mutants (D168V and D168A) are fully susceptible to VX-950. Modeling analysis suggested that there are different mechanisms of resistance for these mutations induced by VX-950 or BILN 2061. In this study, we identified mutants that are cross-resistant to both HCV protease inhibitors. The cross-resistance conferred by substitution of Ala(156) with either Val or Thr was confirmed by characterization of the purified enzymes and reconstituted replicon cells containing the single amino acid substitution A156V or A156T. Both cross-resistance mutations (A156V and A156T) displayed significantly diminished fitness (or replication capacity) in a transient replicon cell system.


Assuntos
Carbamatos/farmacologia , Farmacorresistência Viral , Hepacivirus/enzimologia , Compostos Macrocíclicos/farmacologia , Mutação , Oligopeptídeos/farmacologia , Quinolinas/farmacologia , Inibidores de Serina Proteinase/farmacologia , Tiazóis/farmacologia , Proteínas não Estruturais Virais/farmacologia , Substituição de Aminoácidos , Aminoácidos/química , Ácido Aspártico/química , Sítios de Ligação , Genes Dominantes , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Humanos , Técnicas In Vitro , Concentração Inibidora 50 , Cinética , Modelos Químicos , Modelos Moleculares , RNA Viral/fisiologia , Replicon/fisiologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
6.
J Biol Chem ; 279(17): 17508-14, 2004 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-14766754

RESUMO

We have used a structure-based drug design approach to identify small molecule inhibitors of the hepatitis C virus (HCV) NS3.4A protease as potential candidates for new anti-HCV therapies. VX-950 is a potent NS3.4A protease inhibitor that was recently selected as a clinical development candidate for hepatitis C treatment. In this report, we describe in vitro resistance studies using a subgenomic replicon system to compare VX-950 with another HCV NS3.4A protease inhibitor, BILN 2061, for which the Phase I clinical trial results were reported recently. Distinct drug-resistant substitutions of a single amino acid were identified in the HCV NS3 serine protease domain for both inhibitors. The resistance conferred by these mutations was confirmed by characterization of the mutant enzymes and replicon cells that contain the single amino acid substitutions. The major BILN 2061-resistant mutations at Asp(168) are fully susceptible to VX-950, and the dominant resistant mutation against VX-950 at Ala(156) remains sensitive to BILN 2061. Modeling analysis suggests that there are different mechanisms of resistance to VX-950 and BILN 2061.


Assuntos
Carbamatos/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/enzimologia , Compostos Macrocíclicos , Oligopeptídeos/farmacologia , Quinolinas , Inibidores de Serina Proteinase/farmacologia , Tiazóis/farmacologia , Proteínas não Estruturais Virais/química , Aminoácidos/química , Ácido Aspártico/química , Sítios de Ligação , Relação Dose-Resposta a Droga , Resistência a Medicamentos , Genes Dominantes , Concentração Inibidora 50 , Cinética , Modelos Químicos , Modelos Moleculares , Mutação , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Fatores de Tempo , Proteínas não Estruturais Virais/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA