Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Plant Cell ; 36(3): 559-584, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-37971938

RESUMO

Cellular condensates are usually ribonucleoprotein assemblies with liquid- or solid-like properties. Because these subcellular structures lack a delineating membrane, determining their compositions is difficult. Here we describe a proximity-biotinylation approach for capturing the RNAs of the condensates known as processing bodies (PBs) in Arabidopsis (Arabidopsis thaliana). By combining this approach with RNA detection, in silico, and high-resolution imaging approaches, we studied PBs under normal conditions and heat stress. PBs showed a much more dynamic RNA composition than the total transcriptome. RNAs involved in cell wall development and regeneration, plant hormonal signaling, secondary metabolism/defense, and RNA metabolism were enriched in PBs. RNA-binding proteins and the liquidity of PBs modulated RNA recruitment, while RNAs were frequently recruited together with their encoded proteins. In PBs, RNAs follow distinct fates: in small liquid-like PBs, RNAs get degraded while in more solid-like larger ones, they are stored. PB properties can be regulated by the actin-polymerizing SCAR (suppressor of the cyclic AMP)-WAVE (WASP family verprolin homologous) complex. SCAR/WAVE modulates the shuttling of RNAs between PBs and the translational machinery, thereby adjusting ethylene signaling. In summary, we provide an approach to identify RNAs in condensates that allowed us to reveal a mechanism for regulating RNA fate.


Assuntos
Arabidopsis , RNA , Corpos de Processamento , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Resposta ao Choque Térmico , Arabidopsis/genética , Arabidopsis/metabolismo
2.
Plant Cell Environ ; 47(8): 3132-3146, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38693781

RESUMO

Low temperature stress poses a significant challenge to the productivity of horticultural crops. The dynamic expression of cold-responsive genes plays a crucial role in plant cold tolerance. While NAC transcription factors have been extensively studied in plant growth and development, their involvement in regulating plant cold tolerance remains poorly understood. In this study, we focused on the identification and characterisation of SlNAC3 as the most rapid and robust responsive gene in tomato under low temperature conditions. Manipulating SlNAC3 through overexpression or silencing resulted in reduced or enhanced cold tolerance, respectively. Surprisingly, we discovered a negative correlation between the expression of CBF and cold tolerance in the SlNAC3 transgenic lines. These findings suggest that SlNAC3 regulates tomato cold tolerance likely through a CBF-independent pathway. Furthermore, we conducted additional investigations to identify the molecular mechanisms underlying SINAC3-mediated cold tolerance in tomatoes. Our results revealed that SlNAC3 controls the transcription of ethylene biosynthetic genes, thereby bursting ethylene release in response to cold stress. Indeed, the silencing of these genes led to an augmentation in cold tolerance. This discovery provides valuable insights into the regulatory pathways involved in ethylene-mediated cold tolerance in tomatoes, offering potential strategies for developing innovative approaches to enhance cold stress resilience in this economically important crop species.


Assuntos
Etilenos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Solanum lycopersicum , Temperatura Baixa , Resposta ao Choque Frio/fisiologia , Etilenos/metabolismo , Etilenos/biossíntese , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Solanum lycopersicum/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
3.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328636

RESUMO

Serotonin (5-hydroxytryptamine) plays an important role in many developmental processes and biotic/abiotic stress responses in plants. Although serotonin biosynthetic pathways in plants have been uncovered, knowledge of the mechanisms of serotonin accumulation is still limited, and no regulators have been identified to date. Here, we identified the basic leucine zipper transcription factor OsbZIP18 as a positive regulator of serotonin biosynthesis in rice. Overexpression of OsbZIP18 strongly induced the levels of serotonin and its early precursors (tryptophan and tryptamine), resulting in stunted growth and dark-brown phenotypes. A function analysis showed that OsbZIP18 activated serotonin biosynthesis genes (including tryptophan decarboxylase 1 (OsTDC1), tryptophan decarboxylase 3 (OsTDC3), and tryptamine 5-hydroxylase (OsT5H)) by directly binding to the ACE-containing or G-box cis-elements in their promoters. Furthermore, we demonstrated that OsbZIP18 is induced by UV-B stress, and experiments using UV-B radiation showed that transgenic plants overexpressing OsbZIP18 exhibited UV-B stress-sensitive phenotypes. Besides, exogenous serotonin significantly exacerbates UV-B stress of OsbZIP18_OE plants, suggesting that the excessive accumulation of serotonin may be responsible for the sensitivity of OsbZIP18_OE plants to UV-B stress. Overall, we identified a positive regulator of serotonin biosynthesis and demonstrated that UV-B-stress induced serotonin accumulation, partly in an OsbZIP18-dependent manner.


Assuntos
Oryza , Descarboxilases de Aminoácido-L-Aromático/genética , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Serotonina/metabolismo
4.
BMC Genomics ; 22(1): 838, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34794378

RESUMO

BACKGROUND: Black pepper (Piper nigrum L.), an important and long-cultivated spice crop, is native to South India and grown in the tropics. Piperine is the main pungent and bioactive alkaloid in the berries of black pepper, but the molecular mechanism for piperine biosynthesis has not been determined. MicroRNAs (miRNAs), which are classical endogenous noncoding small RNAs, play important roles in regulating secondary metabolism in many species, but less is known regarding black pepper or piperine biosynthesis. RESULTS: To dissect the functions of miRNAs in secondary metabolism especially in piperine biosynthesis, 110 known miRNAs, 18 novel miRNAs and 1007 individual targets were identified from different tissues of black pepper by small RNA sequencing. qRT-PCR and 5'-RLM-RACE experiments were conducted to validate the reliability of the sequencing data and predicted targets. We found 3 miRNAs along with their targets including miR166-4CL, miR396-PER and miR397-CCR modules that are involved in piperine biosynthesis. CONCLUSION: MiRNA regulation of secondary metabolism is a common phenomenon in plants. Our study revealed new miRNAs that regulate piperine biosynthesis, which are special alkaloids in the piper genus, and they might be useful for future piperine genetic improvement of black pepper.


Assuntos
Alcaloides , MicroRNAs , Piper nigrum , Benzodioxóis , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Piperidinas , Plantas Geneticamente Modificadas , Alcamidas Poli-Insaturadas , Reprodutibilidade dos Testes , Análise de Sequência de RNA
5.
Plant Physiol ; 177(3): 1286-1302, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29760199

RESUMO

Leaf senescence is an essential physiological process in plants that supports the recycling of nitrogen and other nutrients to support the growth of developing organs, including young leaves, seeds, and fruits. Thus, the regulation of senescence is crucial for evolutionary success in wild populations and for increasing yield in crops. Here, we describe the influence of a NAC transcription factor, SlNAP2 (Solanum lycopersicum NAC-like, activated by Apetala3/Pistillata), that controls both leaf senescence and fruit yield in tomato (S. lycopersicum). SlNAP2 expression increases during age-dependent and dark-induced leaf senescence. We demonstrate that SlNAP2 activates SlSAG113 (S. lycopersicum SENESCENCE-ASSOCIATED GENE113), a homolog of Arabidopsis (Arabidopsis thaliana) SAG113, chlorophyll degradation genes such as SlSGR1 (S. lycopersicum senescence-inducible chloroplast stay-green protein 1) and SlPAO (S. lycopersicum pheide a oxygenase), and other downstream targets by directly binding to their promoters, thereby promoting leaf senescence. Furthermore, SlNAP2 directly controls the expression of genes important for abscisic acid (ABA) biosynthesis, S. lycopersicum 9-cis-epoxycarotenoid dioxygenase 1 (SlNCED1); transport, S. lycopersicum ABC transporter G family member 40 (SlABCG40); and degradation, S. lycopersicum ABA 8'-hydroxylase (SlCYP707A2), indicating that SlNAP2 has a complex role in establishing ABA homeostasis during leaf senescence. Inhibiting SlNAP2 expression in transgenic tomato plants impedes leaf senescence but enhances fruit yield and sugar content likely due to prolonged leaf photosynthesis in aging tomato plants. Our data indicate that SlNAP2 has a central role in controlling leaf senescence and fruit yield in tomato.


Assuntos
Frutas/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Escuridão , Dioxigenases/genética , Dioxigenases/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética
6.
J Exp Bot ; 70(10): 2727-2740, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31002305

RESUMO

NAC transcription factors (TFs) are important regulators of expressional reprogramming during plant development, stress responses, and leaf senescence. NAC TFs also play important roles in fruit ripening. In tomato (Solanum lycopersicum), one of the best characterized NACs involved in fruit ripening is NON-RIPENING (NOR), and the non-ripening (nor) mutation has been widely used to extend fruit shelf life in elite varieties. Here, we show that NOR additionally controls leaf senescence. Expression of NOR increases with leaf age, and developmental as well as dark-induced senescence are delayed in the nor mutant, while overexpression of NOR promotes leaf senescence. Genes associated with chlorophyll degradation as well as senescence-associated genes (SAGs) show reduced and elevated expression, respectively, in nor mutants and NOR overexpressors. Overexpression of NOR also stimulates leaf senescence in Arabidopsis thaliana. In tomato, NOR supports senescence by directly and positively regulating the expression of several senescence-associated genes including, besides others, SlSAG15 and SlSAG113, SlSGR1, and SlYLS4. Finally, we find that another senescence control NAC TF, namely SlNAP2, acts upstream of NOR to regulate its expression. Our data support a model whereby NAC TFs have often been recruited by higher plants for both the control of leaf senescence and fruit ripening.


Assuntos
Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Solanum lycopersicum/fisiologia , Fatores de Transcrição/genética , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo
7.
Zhonghua Yu Fang Yi Xue Za Zhi ; 49(12): 1056-60, 2015 Dec.
Artigo em Zh | MEDLINE | ID: mdl-26887299

RESUMO

OBJECTIVE: To investigate the genetic characteristics of coxsackievirus A10(CV-A10) strains isolated from hand, foot and mouth disease (HFMD) cases in Ningxia province. METHODS: Based on the HFMD laboratory network surveillance system, 2 470 patients clinical specimens including 450 faeces and 2 020 throat swaps were collected from various regions people's hospital in Ningxia Hui Autonomous Region during January, 2013 to December, 2014. All specimens were isolated using rhabdomyosarcoma cells. VP1 regional gene of isolated strains was amplified by RT-PCR using degenerate primers and sequenced. Sequences were compared with the database of GenBank by the Blast algorithm to identify the enterovirus genotypes. All the CV-A10 strains were performed the homology and phylogenetic evolution analysis. RESULTS: 450 specimens identified as non-EV-A71, non-CV-A16 enterovirus were collected and 36 CV-A10 strains were isolated, 6 strains were isolated in 2013 and 30 strains were isolated in 2014. The homology of nucleotides and amino acids among 36 CV-A10 strains were 90.6%-100.0% , and 90.2%-100.0%, respectively. Compared 36 strains with genotype A, B, C, D representative strains, it has the highest homology with the genotype C, the nucleotide and amino acids homogeneity were 90.2%-98.9% and 95.7%-99.7%. The phylogenetic tree showed 36 strains and genotype C representative strains located in the same evolutionary branch. CONCLUSION: CV-A10 was one of the most common pathogen of HFMD in Ningxia Hui Autonomous Region. All CV-A10 strains belonged to genotype C and contained wide homology range.


Assuntos
Enterovirus/genética , Genótipo , Doença de Mão, Pé e Boca/virologia , Filogenia , China , Humanos , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
8.
J Virol ; 87(8): 4683-93, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23408617

RESUMO

Many viruses use the host trafficking system at a variety of their replication steps. Measles virus (MV) possesses a nonsegmented negative-strand RNA genome that encodes three components of the ribonucleoprotein (RNP) complex (N, P, and L), two surface glycoproteins, a matrix protein, and two nonstructural proteins. A subset of immune cells and polarized epithelial cells are in vivo targets of MV, and MV is selectively released from the apical membrane of polarized epithelial cells. However, the molecular mechanisms for the apical release of MV remain largely unknown. In the present study, the localization and trafficking mechanisms of the RNP complex of MV were analyzed in detail using recombinant MVs expressing fluorescent protein-tagged L proteins. Live cell imaging analyses demonstrated that the MV RNP complex was transported in a manner dependent on the microtubule network and together with Rab11A-containing recycling endosomes. The RNP complex was accumulated at the apical membrane and the apical recycling compartment. The accumulation and shedding of infectious virions were severely impaired by expression of a dominant negative form of Rab11A. On the other hand, recycling endosome-mediated RNP transport was totally dispensable for virus production in nonpolarized cells. These data provide the first demonstration of the regulated intracellular trafficking events of the MV RNP complex that define the directional viral release from polarized epithelial cells.


Assuntos
Endossomos/metabolismo , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno , Vírus do Sarampo/fisiologia , Ribonucleoproteínas/metabolismo , Liberação de Vírus , Animais , Fusão Gênica Artificial , Transporte Biológico , Linhagem Celular , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Humanos , RNA Viral/metabolismo , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Virais/metabolismo
9.
J Virol ; 87(1): 666-75, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23115278

RESUMO

Effective vaccination programs have dramatically reduced the number of measles-related deaths globally. Although all the available data suggest that measles eradication is biologically feasible, a structural and biochemical basis for the single serotype nature of measles virus (MV) remains to be provided. The hemagglutinin (H) protein, which binds to two discrete proteinaceous receptors, is the major neutralizing target. Monoclonal antibodies (MAbs) recognizing distinct epitopes on the H protein were characterized using recombinant MVs encoding the H gene from different MV genotypes. The effects of various mutations on neutralization by MAbs and virus fitness were also analyzed, identifying the location of five epitopes on the H protein structure. Our data in the present study demonstrated that the H protein of MV possesses at least two conserved effective neutralizing epitopes. One, which is a previously recognized epitope, is located near the receptor-binding site (RBS), and thus MAbs that recognize this epitope blocked the receptor binding of the H protein, whereas the other epitope is located at the position distant from the RBS. Thus, a MAb that recognizes this epitope did not inhibit the receptor binding of the H protein, rather interfered with the hemagglutinin-fusion (H-F) interaction. This epitope was suggested to play a key role for formation of a higher order of an H-F protein oligomeric structure. Our data also identified one nonconserved effective neutralizing epitope. The epitope has been masked by an N-linked sugar modification in some genotype MV strains. These data would contribute to our understanding of the antigenicity of MV and support the global elimination program of measles.


Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos/genética , Epitopos/imunologia , Vírus do Sarampo/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Anticorpos Monoclonais/imunologia , Humanos , Vírus do Sarampo/genética , Proteínas Mutantes/genética , Proteínas Mutantes/imunologia , Testes de Neutralização
10.
Chemosphere ; 366: 143510, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39384134

RESUMO

Accurate quantification of soil volatile organic compounds (VOCs) flux is crucial for assessing inhalation environmental health risks and developing region-specific remediation strategies. However, land cover significantly influences VOCs emissions from soil. This study investigated benzene, a representative VOCs, using a laboratory flux chamber and numerical simulations to evaluate its release patterns under different surface covers, including bare soil (no cover), clay brick, cement, and grass. In the experiment, gaseous benzene was collected using an adsorption tube filled with Tenax-TA adsorbent. The collected samples were subsequently analyzed using thermal desorption coupled with gas chromatography-mass spectrometry. By integrating these findings with environmental health risk assessment methodologies, we developed a tailored approach for assessing inhalation health risks at benzene-contaminated sites with varying land covers. Additionally, we conducted application studies of this method across various scenarios. The results indicate that soil benzene emissions could be reduced by using low-permeability coverings such as clay brick and cement, as well as by planting vegetation. The average fluxes of benzene through covering materials were of the order of 1.22 × 10-2, 4.37 × 10-3, 2.47 × 10-3, and 9.88 × 10-4 mg m-2·s-1 for bare soil, clay brick, grass, and cement, respectively. The application of clay brick and cement coverings on the soil surface results in more pollutants remaining in the soil in liquid and adsorbed states, making them less likely to volatilize. The inhalation carcinogenic risk (CR) values for soil benzene at an abandoned oil refinery site in Northwestern China under bare soil, brick, and cement cover are 1.3 × 10-6, 1.22 × 10-6, and 9.73 × 10-7, respectively. Low-permeability covers such as clay brick and cement reduces the inhalation CR of gaseous benzene from the surface soil, and delays the growth trend of cumulative inhalation CR.


Assuntos
Benzeno , Poluentes do Solo , Solo , Compostos Orgânicos Voláteis , Benzeno/análise , Poluentes do Solo/análise , Compostos Orgânicos Voláteis/análise , Solo/química , Medição de Risco , Humanos , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Exposição por Inalação/análise , Exposição por Inalação/estatística & dados numéricos
11.
ACS Appl Mater Interfaces ; 16(26): 33205-33222, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38915205

RESUMO

In diabetic patients with skin injuries, bacterial proliferation, accumulation of reactive oxygen species (ROS) in the tissues, and impaired angiogenesis make wound healing difficult. Therefore, eliminating bacteria, removing ROS, and promoting angiogenesis are necessary for treating acute diabetic wounds. In this study, benefiting from the ability of polyphenols to form a metal-phenolic network (MPN) with metal ions, TA-Eu MPN nanoparticles (TM NPs) were synthesized. The prepared photothermal agent CuS NPs and TM NPs were then loaded onto the supporting base and needle tips of PVA/HA (PH) microneedles, respectively, to obtain PH/CuS/TM microneedles. Antibacterial experiments showed that microneedles loaded with CuS NPs could remove bacteria by the photothermal effect. In vitro experiments showed that the microneedles could effectively scavenge ROS, inhibit macrophage polarization to the M1 type, and induce polarization to the M2 type as well as have the ability to promote vascular endothelial cell migration and angiogenesis. Furthermore, in vivo experiments showed that PH/CuS/TM microneedles accelerated wound healing by inhibiting pro-inflammatory cytokines and promoting angiogenesis in a diabetic rat wound model. Therefore, PH/CuS/TM microneedles have efficient antibacterial, ROS scavenging, anti-inflammatory, immunomodulatory, and angiogenic abilities and hold promise as wound dressings for treating acute diabetic wounds.


Assuntos
Antibacterianos , Diabetes Mellitus Experimental , Espécies Reativas de Oxigênio , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Espécies Reativas de Oxigênio/metabolismo , Ratos , Antibacterianos/farmacologia , Antibacterianos/química , Diabetes Mellitus Experimental/tratamento farmacológico , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Agulhas , Ratos Sprague-Dawley , Humanos , Masculino , Células Endoteliais da Veia Umbilical Humana , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Células RAW 264.7 , Angiogênese
12.
Front Plant Sci ; 15: 1392175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736439

RESUMO

Wolfberry (Lycium, of the family Solanaceae) has special nutritional benefits due to its valuable metabolites. Here, 16 wolfberry-specific metabolites were identified by comparing the metabolome of wolfberry with those of six species, including maize, rice, wheat, soybean, tomato and grape. The copy numbers of the riboflavin and phenyllactate degradation genes riboflavin kinase (RFK) and phenyllactate UDP-glycosyltransferase (UGT1) were lower in wolfberry than in other species, while the copy number of the phenyllactate synthesis gene hydroxyphenyl-pyruvate reductase (HPPR) was higher in wolfberry, suggesting that the copy number variation of these genes among species may be the main reason for the specific accumulation of riboflavin and phenyllactate in wolfberry. Moreover, the metabolome-based neighbor-joining tree revealed distinct clustering of monocots and dicots, suggesting that metabolites could reflect the evolutionary relationship among those species. Taken together, we identified 16 specific metabolites in wolfberry and provided new insight into the accumulation mechanism of species-specific metabolites at the genomic level.

13.
ISA Trans ; 143: 205-220, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37704556

RESUMO

The interference of complex environments on object detection tasks dramatically limits the application of object detection algorithms. Improving the detection accuracy of the object detection algorithms is able to effectively enhance the stability and reliability of the object detection algorithm-based tasks in complex environments. In order to ameliorate the detection accuracy of object detection algorithms under various complex environment transformations, this work proposes the Siamese Attention YOLO (SAYOLO) object detection algorithm based on ingenious siamese attention structure. The ingenious siamese attention structure includes three aspects: Attention Neck YOLOv4 (ANYOLOv4), siamese neural network structure and special designed network scoring module. In the Complex Mini VOC dataset, the detection accuracy of SAYOLO algorithm is 12.31%, 48.93%, 17.80%, 10.12%, 18.79% and 1.12% higher than Faster-RCNN (Resnet50), SSD (Mobilenetv2), YOLOv3, YOLOv4, YOLOv5-l and YOLOX-x, respectively. Compared with traditional object detection algorithms based on image preprocessing, the detection accuracy of SAYOLO is 4.88%, 11.51%, 1.73%, 23.27%, 18.12%, and 5.76% higher than Image-Adaptive YOLO, MSBDN-DFF + YOLOv4, Dark Channel Prior + YOLOv4, Zero-DCE + YOLOv4, MSBDN-DFF + Zero-DCE + YOLOv4, and Dark Channel Prior + Zero-DCE + YOLOv4, respectively.

14.
Infect Genet Evol ; 116: 105518, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890809

RESUMO

G3P (Matthijnssens et al., 2008b [9]) is a rare combination of human rotavirus VP7/VP4 genotypes with a complex evolutionary pattern but limited related studies. Detailed genomic characterisation and genetic evolutionary analyses of G3P (Matthijnssens et al., 2008b [9]) rotaviruses have helped to enhance our understanding of rotavirus diversity. For the first time, we detected two human G3P (Matthijnssens et al., 2008b [9]) Rotavirus A (RVA) strains, RVA/Human-tc/CHN/2020999/2020/G3P (Matthijnssens et al., 2008b [9]) and RVA/Human-wt/CHN/23582009/2023/G3P (Matthijnssens et al., 2008b [9]), in diarrhoea patients from the Ningxia region of China, and carried out a whole-genome analysis of these strains. 2,020,999 and 23,582,009 have identical gene constellations: G3-P[9]-I2-R2-C2-M2-A3-N2-T3-E3-H3, and this genotypic constellation was reported first time in China. They are closely related in 11 genome segments. The genotypes of these two strains are different from the human RVA strains L621 and E2451, which are only G3P (Matthijnssens et al., 2008b [9]) strains reported so far in China, but are identical to those of the Thai feline strain Meesuk and the Korean human strain CAU12-2-51.Phylogenetic analysis showed that the VP6, VP1-VP3, and NSP2 genes of the two strains in this study clustered with human/bovine and feline/bovine rotavirus strains to form a sublineage distinct from the common DS-1-like G2 human rotavirus. In contrast, the VP7, VP4, NSP1, and NSP3-NSP5 gene segments were closely associated with human/feline rotavirus and feline rotavirus strains. These findings suggest that the evolutionary origin of the G3P (Matthijnssens et al., 2008b [9]) human rotavirus found in Ningxia, China, is consistent with the Meesuk and CAU12-2-51 strains, may have arisen through reassortment between uncommon human/bovine, feline/bovine rotavirus strains and human/feline, feline rotaviruses. However, VP1-VP2 gene segments did not have the same lineage as strains Meesuk and CAU12-2-51, suggesting that these genes might be derived from additional reassortment event.


Assuntos
Infecções por Rotavirus , Rotavirus , Humanos , Animais , Gatos , Bovinos , Rotavirus/genética , Infecções por Rotavirus/veterinária , Filogenia , Genoma Viral , Genômica , Genótipo , China/epidemiologia
15.
Infect Genet Evol ; 113: 105469, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37331499

RESUMO

BACKGROUND: Group A rotaviruses (RVA) are the primary pathogens of acute gastroenteritis. Currently, two live attenuated RVA vaccines, LLR and RotaTeq, have been introduced into mainland China but are not included in the national immunization program. Because of the unknown genetic evolution of group A rotavirus in an all-age population in Ningxia, China, we monitored the epidemiological characteristics and circulating genotypes of RVA as a reference for developing vaccine strategies. METHODS: We conducted seven years of consecutive surveillance of RVA based on stool samples from patients with acute gastroenteritis in sentinel hospitals in Ningxia, China, from 2015 to 2021. Reverse transcription quantitative polymerase chain reaction(RT-qPCR) was used to detect RVA in stool samples. Genotyping and phylogenetic analysis of VP7, VP4 and NSP4 genes were performed by reverse transcription-polymerase chain reaction(RT-PCR) and nucleotide sequence determination. RESULTS: RVA was detected in 16.58% (1436/8662) of 8662 stool samples. The positive rates were 7.17% (201/2805) and 21.09% (1235/5857) in adults and children, respectively. The most affected age group was infants and children aged 12-23 months, with a positive rate of 29.53% (p < 0.05). A significant winter/spring seasonality was observed. 23.29% positive rate in 2020 was the highest in 7 years (p < 0.05). The region with the highest positive rate in the adult group was Yinchuan, and the children's group was Guyuan. A total of 9 genotype combinations were found to be distributed in Ningxia. The dominant genotype combinations in this region gradually changed from G9P[8]-E1, G3P[8]-E1, G1P[8]-E1 to G9P[8]-E1, G9P[8]-E2, and G3P[8]-E2 during these seven years. Rare strains (e.g., G9P[4]-E1, G3P[9]-E3 and G1P[8]-E2) were occasionally detected during the study. CONCLUSIONS: During the study period, changes in the significant RVA circulating genotype combinations and the emergence of reassortment strains were observed, particularly the emergence and prevalence of G9P[8]-E2, G3P[8]-E2 reassortants in the region. These results indicate the importance of continuous monitoring of the molecular evolution and recombination characteristics of RVA, and should not be limited to G/P genotyping but should consider multi-gene fragment co-analysis and whole genome sequencing.


Assuntos
Gastroenterite , Infecções por Rotavirus , Rotavirus , Lactente , Criança , Adulto , Humanos , Filogenia , Prevalência , Gastroenterite/epidemiologia , Genótipo , China/epidemiologia , Fezes
16.
Anticancer Agents Med Chem ; 23(17): 1944-1957, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37497684

RESUMO

BACKGROUND: Glutaminase (GLS), the key enzyme involved in glutamine metabolism, has been identified as a critical player in tumor growth and progression. The GLS inhibitor CB-839 has entered several clinical trials against a variety of tumors. OBJECTIVE: Our study aimed to investigate the role and underlying mechanism of GLS and its inhibitor CB-839 in nasopharyngeal carcinoma (NPC). METHODS: The expression, downstream genes, and signaling pathways of GLS in NPC were determined by real-time polymerase chain reaction (RT-PCR), PCR array, western blotting (WB), and immunohistochemical staining (IHC), and the phenotype of GLS was confirmed by in vivo experiments of subcutaneous tumor formation in mice and in vitro experiments of functional biology, including Cell Counting Kit-8 (CCK-8), colony formation, flow cytometry, transwell migration, and Boyden invasion assay. Finally, it was also verified whether the treatment of NPC cells by GLS inhibitor CB-839 can change various biological functions and protein expression to achieve the purpose of blocking tumor progression. RESULTS: GLS was remarkably overexpressed in NPC cells and tissues, predicting a poor overall survival of NPC patients. GLS promoted cell cycle, proliferation, colony formation, migratory, and invasive capacities by regulating Cyclin D2 (CCND2) via PI3K/AKT/mTOR pathway in NPC in vitro and in vivo. Notably, CB-839 showed an effective anti-NPC tumor effect by blocking the biological functions of the tumor. CONCLUSION: The first innovative proof is that GLS promotes cell proliferation by regulating CCND2 via PI3K/AKT/mTOR pathway in NPC, and GLS inhibitor CB-839 may serve as a new potential therapeutic target for NPC treatment.


Assuntos
Glutaminase , Glutamina , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glutaminase/genética , Glutaminase/metabolismo , Glutamina/farmacologia , Glutamina/genética , Glutamina/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
17.
Front Oncol ; 12: 815437, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35311117

RESUMO

Immunotherapy targeting programmed death ligand-1/programmed cell death protein-1 (PD-L1/PD-1) has achieved great success in multiple cancers, but only a small subset of patients showed clinical responses. Recent evidences have shown that post-translational modification of PD-L1 protein could regulate its protein stability and interaction with cognate receptor PD-1, thereby affecting anticancer immunotherapy in several solid tumors. However, the molecular mechanisms underlying how PD-1/PD-L1 expression is regulated still remain unclear in nasopharyngeal carcinoma (NPC). Here, we found N-glycosylation of PD-L1 in NPC cells and tissues. Mechanistically, we showed that STT3A transferred N-linked glycans to PD-L1, and TGF-ß1 could positively regulate STT3A expression through activating c-Jun to bind to STT3A promoter. Functional assays showed that inhibition of TGF-ß1 resulted in a decrease of glycosylated PD-L1 and enhanced cytotoxic T-cell function against NPC cells. Analysis of clinical specimens revealed that the expression of STT3A was positively correlated with TGF-ß1 and c-Jun, and high STT3A expression was positively correlated with a more advanced clinical stage. Altogether, TGF-ß1 activated c-Jun/STT3A signaling pathway to promote N-glycosylation of PD-L1, thus further facilitating immune evasion and reducing the efficacy of cancer immunotherapy. As such, all these data suggested that targeting TGF-ß1 pathway might be a promising approach to enhance immune checkpoint blockade, and simultaneous blockade of PD-L1 and TGF-ß1 pathways might elicit potent and superior antitumor activity relative to monotherapies.

18.
Cell Death Dis ; 12(5): 411, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875643

RESUMO

In nasopharyngeal carcinoma (NPC), the treatment of tumor metastasis and recurrence is challenging and is associated with poor clinical efficacy. Vasculogenic mimicry (VM) is a new blood-supply model of malignant tumor that is closely related to tumors' distant metastasis. Our previous study demonstrated that miR-124 could target Foxq1 to inhibit NPC metastasis. Whether Foxq1 affects metastasis through vasculogenic mimicry is worth consideration. In this study, we show that VM formation positively correlates with the expression of Foxq1, and EGFR, and the TNM stage in 114 NPC patient samples. Meanwhile, we show that VM-positive NPC patients have a poor prognosis. Furthermore, using in vitro and vivo approaches, we confirm that Foxq1 has a significant effect on NPC metastasis through promoting VM formation, which could be effectively inhibited by EGFR inhibitors (Nimotuzumab or Erlotinib). Also a synergistic efficacy of anti-EGFR and anti-VEGF drugs has been found in NPC inhibition. Mechanistically, the luciferase reporter gene and CHIP assays show that Foxq1 directly binds to the EGFR promoter region and regulates EGFR transcription. In conclusion, our results show that Foxq1 is regulated by miR-124 and that it promotes NPC metastasis by inducing VM via the EGFR signaling pathway. Overall, these results provide a new theoretical support and a novel target selection for anti-VM therapy in the treatment of nasopharyngeal carcinoma.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Sistemas de Liberação de Medicamentos , Receptores ErbB/metabolismo , Humanos , Carcinoma Nasofaríngeo/irrigação sanguínea , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/irrigação sanguínea , Neoplasias Nasofaríngeas/patologia , Metástase Neoplásica , Transdução de Sinais
19.
ISA Trans ; 102: 193-207, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32143849

RESUMO

High-speed cold tandem rolling process control system consists of complex mechanical and electrical equipments. The coupling association of these equipments makes multi-objective rolling process complicated to be predicted and controlled. In order to achieve higher prediction precision, a multi-parameter depth perception model is established based on a deep belief network. To get higher control precision in real time, a multi-objective rolling optimization method is introduced, which is supported by many-objective evolutionary algorithm. Five objectives are selected as rolling schedule optimization objective: equal relative power margin, slippage prevent, good flatness, total energy consumption and energy consumption per ton. Simulation results show that many-objective evolutionary algorithm based on decomposition and Gaussian mixture model achieves a set of balance solutions on these objectives. The proposed method could not only predict rolling force and rolling power in real time, but also give the solutions for many-objective reduction schedule.

20.
PLoS Negl Trop Dis ; 14(5): e0008312, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453787

RESUMO

Although Japanese encephalitis virus genotype Ib (JEV GIb) has replaced JEV GIII as the dominant genotype in endemic areas of Asia, no JEV GIb has been isolated from JE cases and natural mosquitoes at the same time in an outbreak of JE. In this study, we conducted virological and molecular biological laboratory tests on JE case samples (serum/cerebrospinal fluid) and locally collected mosquito samples from the 2018 JE outbreak in Ningxia, China. The result of JEV IgM antibody detection showed that 96% (67/70) of the suspected cases were laboratory-confirmed JE cases. Of the mosquitoes collected from local environments, 70% (17400/24900) were Culex tritaeniorhynchus of which 4.6% (16 /348 of the pools tested) were positive for JEV, other mosquitoes were negative. JEVs isolated from both the human cases and C. tritaeniorhynchus specimens belong to JEV GIb and are in the same evolutionary clade according to molecular evolution analyses. JEV GIb was detected simultaneously from specimens of JE cases and mosquito samples collected in nature in this study, suggesting that the JE outbreak that occurred in Ningxia in 2018 was due to infection of JEV GIb.


Assuntos
Surtos de Doenças , Vírus da Encefalite Japonesa (Espécie)/classificação , Encefalite Japonesa/epidemiologia , Encefalite Japonesa/virologia , Genótipo , Adolescente , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais/sangue , Anticorpos Antivirais/líquido cefalorraquidiano , China/epidemiologia , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/sangue , Encefalite Japonesa/líquido cefalorraquidiano , Feminino , Humanos , Imunoglobulina M/sangue , Masculino , Filogenia , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/virologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA