Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Cell ; 83(11): 1872-1886.e5, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172591

RESUMO

Deregulated inflammation is a critical feature driving the progression of tumors harboring mutations in the liver kinase B1 (LKB1), yet the mechanisms linking LKB1 mutations to deregulated inflammation remain undefined. Here, we identify deregulated signaling by CREB-regulated transcription coactivator 2 (CRTC2) as an epigenetic driver of inflammatory potential downstream of LKB1 loss. We demonstrate that LKB1 mutations sensitize both transformed and non-transformed cells to diverse inflammatory stimuli, promoting heightened cytokine and chemokine production. LKB1 loss triggers elevated CRTC2-CREB signaling downstream of the salt-inducible kinases (SIKs), increasing inflammatory gene expression in LKB1-deficient cells. Mechanistically, CRTC2 cooperates with the histone acetyltransferases CBP/p300 to deposit histone acetylation marks associated with active transcription (i.e., H3K27ac) at inflammatory gene loci, promoting cytokine expression. Together, our data reveal a previously undefined anti-inflammatory program, regulated by LKB1 and reinforced through CRTC2-dependent histone modification signaling, that links metabolic and epigenetic states to cell-intrinsic inflammatory potential.


Assuntos
Histonas , Proteínas Serina-Treonina Quinases , Humanos , Histonas/genética , Histonas/metabolismo , Acetilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Citocinas/metabolismo , Inflamação/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
PLoS Pathog ; 18(9): e1010450, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36054228

RESUMO

Broadly neutralizing antibodies (bNAbs) that target the membrane-proximal external region (MPER) of HIV gp41 envelope, such as 4E10, VRC42.01 and PGZL1, can neutralize >80% of viruses. These three MPER-directed monoclonal antibodies share germline antibody genes (IGHV1-69 and IGKV3-20) and form a bNAb epitope class. Furthermore, convergent evolution within these two lineages towards a 111.2GW111.3 motif in the CDRH3 is known to enhance neutralization potency. We have previously isolated an MPER neutralizing antibody, CAP206-CH12, that uses these same germline heavy and light chain genes but lacks breadth (neutralizing only 6% of heterologous viruses). Longitudinal sequencing of the CAP206-CH12 lineage over three years revealed similar convergent evolution towards 111.2GW111.3 among some lineage members. Mutagenesis of CAP206-CH12 from 111.2GL111.3 to 111.2GW111.3 and the introduction of the double GWGW motif into CAP206-CH12 modestly improved neutralization potency (2.5-3-fold) but did not reach the levels of potency of VRC42.01, 4E10 or PGZL1. To explore the lack of potency/breadth, viral mutagenesis was performed to map the CAP206-CH12 epitope. This indicated that CAP206-CH12 is dependent on D674, a highly variable residue at the solvent-exposed elbow of MPER. In contrast, VRC42.01, PGZL1 and 4E10 were dependent on highly conserved residues (W672, F673, T676, and W680) facing the hydrophobic patch of the MPER. Therefore, while CAP206-CH12, VRC42.01, PGZL1 and 4E10 share germline genes and show some evidence of convergent evolution, their dependence on different amino acids, which impacts orientation of binding to the MPER, result in differences in breadth and potency. These data have implications for the design of HIV vaccines directed at the MPER epitope.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Aminoácidos , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Epitopos/química , Epitopos/genética , Anticorpos Anti-HIV , Proteína gp41 do Envelope de HIV , Humanos , Solventes
3.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30567996

RESUMO

The development of HIV broadly neutralizing antibodies (bNAbs) has previously been shown to be associated with viral evolution and high levels of genetic diversity in the HIV envelope (Env) glycoprotein. However, few studies have examined Env evolution in those who fail to develop neutralization breadth in order to assess whether bNAbs result from distinct evolutionary pathways. We compared Env evolution in eight HIV-1-infected participants who developed bNAbs to six donors with similar viral loads who did not develop bNAbs over three years of infection. We focused on Env V1V2 and C3V4, as these are major targets for both strain-specific neutralizing antibodies (nAbs) and bNAbs. Overall evolutionary rates (ranging from 9.92 × 10-3 to 4.1 × 10-2 substitutions/site/year) and viral diversity (from 1.1% to 6.5%) across Env, and within targeted epitopes, did not distinguish bNAb donors from non-bNAb donors. However, bNAb participants had more positively selected residues within epitopes than those without bNAbs, and several of these were common among bNAb donors. A comparison of the kinetics of strain-specific nAbs and bNAbs indicated that selection pressure at these residues increased with the onset of breadth. These data suggest that highly targeted viral evolution rather than overall envelope diversity is associated with neutralization breadth. The association of shared positively selected sites with the onset of breadth highlights the importance of diversity at specific positions in these epitopes for bNAb development, with implications for the development of sequential and cocktail immunization strategies.IMPORTANCE Millions of people are still being infected with HIV decades after the first recognition of the virus. Currently, no vaccine is able to elicit bNAbs that will prevent infection by global HIV strains. Several studies have implicated HIV Env diversity in the development of breadth. However, Env evolution in individuals who fail to develop breadth despite mounting potent strain-specific neutralizing responses has not been well defined. Using longitudinal neutralization, epitope mapping, and sequence data from 14 participants, we found that overall measures of viral diversity were similar in all donors. However, the number of positively selected sites within Env epitopes was higher in bNAb participants than in strain-specific donors. We further identified common sites that were positively selected as bNAbs developed. These data indicate that while viral diversity is required for breadth, this should be highly targeted to specific residues to shape the elicitation of bNAbs by vaccination.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Mapeamento de Epitopos/métodos , Epitopos/imunologia , Feminino , Infecções por HIV/virologia , Humanos , Imunização/métodos , Plasma/imunologia
4.
J Virol ; 93(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30842323

RESUMO

HIV-1 has been shown to evolve independently in different anatomical compartments, but studies in the female genital tract have been inconclusive. Here, we examined evidence of compartmentalization using HIV-1 subtype C envelope (Env) glycoprotein genes (gp160) obtained from matched cervicovaginal lavage (CVL) and plasma samples over 2 to 3 years of infection. HIV-1 gp160 amplification from CVL was achieved for only 4 of 18 acutely infected women, and this was associated with the presence of proinflammatory cytokines and/or measurable viremia in the CVL. Maximum likelihood trees and divergence analyses showed that all four individuals had monophyletic compartment-specific clusters of CVL- and/or plasma-derived gp160 sequences at all or some time points. However, two participants (CAP177 and CAP217) had CVL gp160 diversity patterns that differed from those in plasma and showed restricted viral flow from the CVL. Statistical tests of compartmentalization revealed evidence of persistent compartment-specific gp160 evolution in CAP177, while in CAP217 this was intermittent. Lastly, we identified several Env sites that distinguished viruses in these two compartments; for CAP177, amino acid differences arose largely through positive selection, while insertions/deletions were more common in CAP217. In both cases these differences contributed to substantial charge changes spread across the Env. Our data indicate that, in some women, HIV-1 populations within the genital tract can have Env genetic features that differ from those of viruses in plasma, which could impact the sensitivity of viruses in the genital tract to vaginal microbicides and vaccine-elicited antibodies.IMPORTANCE Most HIV-1 infections in sub-Saharan Africa are acquired heterosexually through the genital mucosa. Understanding the properties of viruses replicating in the female genital tract, and whether these properties differ from those of more commonly studied viruses replicating in the blood, is therefore important. Using longitudinal CVL and plasma-derived sequences from four HIV-1 subtype C-infected women, we found fewer viral migrations from the genital tract to plasma than in the opposite direction, suggesting a mucosal sieve effect from the genital tract to the blood compartment. Evidence for both persistent and intermittent compartmentalization between the genital tract and plasma viruses during chronic infection was detected in two of four individuals, perhaps explaining previously conflicting findings. In cases where compartmentalization occurred, comparison of CVL- and plasma-derived HIV sequences indicated that distinct features of viral populations in the CVL may affect the efficacy of microbicides and vaccines designed to provide mucosal immunity.


Assuntos
Genitália Feminina/virologia , Proteína gp160 do Envelope de HIV/genética , Vagina/virologia , Adolescente , Adulto , Feminino , Anticorpos Anti-HIV/genética , Proteína gp160 do Envelope de HIV/metabolismo , Infecções por HIV/virologia , Soropositividade para HIV/genética , HIV-1/imunologia , HIV-1/metabolismo , HIV-1/patogenicidade , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Especificidade de Órgãos/genética , Filogenia , RNA Viral/genética , Infecções do Sistema Genital/virologia , África do Sul , Carga Viral , Viremia/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
5.
PLoS Pathog ; 14(4): e1006987, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29630668

RESUMO

While the induction of broadly neutralizing antibodies (bNAbs) is a major goal of HIV vaccination strategies, there is mounting evidence to suggest that antibodies with Fc effector function also contribute to protection against HIV infection. Here we investigated Fc effector functionality of HIV-specific IgG plasma antibodies over 3 years of infection in 23 individuals, 13 of whom developed bNAbs. Antibody-dependent cellular phagocytosis (ADCP), complement deposition (ADCD), cellular cytotoxicity (ADCC) and cellular trogocytosis (ADCT) were detected in almost all individuals with levels of activity increasing over time. At 6 months post-infection, individuals with bNAbs had significantly higher levels of ADCD and ADCT that correlated with antibody binding to C1q and FcγRIIa respectively. In addition, antibodies from individuals with bNAbs showed more IgG subclass diversity to multiple HIV antigens which also correlated with Fc polyfunctionality. Germinal center activity represented by CXCL13 levels and expression of activation-induced cytidine deaminase (AID) was found to be associated with neutralization breadth, Fc polyfunctionality and IgG subclass diversity. Overall, multivariate analysis by random forest classification was able to group bNAb individuals with 85% sensitivity and 80% specificity based on the properties of their antibody Fc early in HIV infection. Thus, the Fc effector function profile predicted the development of neutralization breadth in this cohort, suggesting that intrinsic immune factors within the germinal center provide a mechanistic link between the Fc and Fab of HIV-specific antibodies.


Assuntos
Anticorpos Neutralizantes/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Adulto , Anticorpos Neutralizantes/sangue , Estudos de Casos e Controles , Anticorpos Anti-HIV/sangue , Infecções por HIV/sangue , Infecções por HIV/virologia , Humanos , Imunoglobulina G/sangue
6.
BMC Evol Biol ; 16: 182, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27600545

RESUMO

BACKGROUND: Cassava mosaic disease (CMD) in Madagascar is caused by a complex of at least six African cassava mosaic geminivirus (CMG) species. This provides a rare opportunity for a comparative study of the evolutionary and epidemiological dynamics of distinct pathogenic crop-infecting viral species that coexist within the same environment. The genetic and spatial structure of CMG populations in Madagascar was studied and Bayesian phylogeographic modelling was applied to infer the origins of Madagascan CMG populations within the epidemiological context of related populations situated on mainland Africa and other south western Indian Ocean (SWIO) islands. RESULTS: The isolation and analysis of 279 DNA-A and 117 DNA-B sequences revealed the presence in Madagascar of four prevalent CMG species (South African cassava mosaic virus, SACMV; African cassava mosaic virus, ACMV; East African cassava mosaic Kenya virus, EACMKV; and East African cassava mosaic Cameroon virus, EACMCV), and of numerous CMG recombinants that have, to date, only ever been detected on this island. SACMV and ACMV, the two most prevalent viruses, displayed low degrees of genetic diversity and have most likely been introduced to the island only once. By contrast, EACMV-like CMG populations (consisting of East African cassava mosaic virus, EAMCKV, EACMCV and complex recombinants of these) were more diverse, more spatially structured, and displayed evidence of at least three independent introductions from mainland Africa. Although there were no statistically supported virus movement events between Madagascar and the other SWIO islands, at least one mainland African ACMV variant likely originated in Madagascar. CONCLUSIONS: Our study highlights both the complexity of CMD in Madagascar, and the distinct evolutionary and spatial dynamics of the different viral species that collectively are associated with this disease. Given that more distinct CMG species and recombinants have been found in Madagascar than any other similarly sized region of the world, the risks of recombinant CMG variants emerging on this island are likely to be higher than elsewhere. Evidence of an epidemiological link between Madagascan and mainland African CMGs suggests that the consequences of such emergence events could reach far beyond the shores of this island.


Assuntos
Begomovirus/genética , Evolução Biológica , Manihot/virologia , Teorema de Bayes , DNA Viral/genética , Variação Genética , Madagáscar , Filogeografia , Doenças das Plantas/virologia , Recombinação Genética
7.
Cell Rep ; 43(8): 114506, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39052479

RESUMO

Functional and phenotypic heterogeneity of dendritic cells (DCs) play crucial roles in facilitating the development of diverse immune responses essential for host protection. Here, we report that KDM5C, a histone lysine demethylase, regulates conventional or classical DC (cDC) and plasmacytoid DC (pDC) population heterogeneity and function. Mice deficient in KDM5C in DCs have increased proportions of cDC2Bs and cDC1s, which is partly dependent on type I interferon (IFN) and pDCs. Loss of KDM5C results in an increase in Ly6C- pDCs, which, compared to Ly6C+ pDCs, have limited ability to produce type I IFN and more efficiently stimulate antigen-specific CD8 T cells. KDM5C-deficient DCs have increased expression of inflammatory genes, altered expression of lineage-specific genes, and decreased function. In response to Listeria infection, KDM5C-deficient mice mount reduced CD8 T cell responses due to decreased antigen presentation by cDC1s. Thus, KDM5C is a key regulator of DC heterogeneity and critical driver of the functional properties of DCs.


Assuntos
Linfócitos T CD8-Positivos , Células Dendríticas , Histona Desmetilases , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Animais , Camundongos , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Camundongos Endogâmicos C57BL , Transcrição Gênica , Interferon Tipo I/metabolismo , Apresentação de Antígeno
8.
J Exp Med ; 221(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39150482

RESUMO

Coordination of cellular metabolism is essential for optimal T cell responses. Here, we identify cytosolic acetyl-CoA production as an essential metabolic node for CD8 T cell function in vivo. We show that CD8 T cell responses to infection depend on acetyl-CoA derived from citrate via the enzyme ATP citrate lyase (ACLY). However, ablation of ACLY triggers an alternative, acetate-dependent pathway for acetyl-CoA production mediated by acyl-CoA synthetase short-chain family member 2 (ACSS2). Mechanistically, acetate fuels both the TCA cycle and cytosolic acetyl-CoA production, impacting T cell effector responses, acetate-dependent histone acetylation, and chromatin accessibility at effector gene loci. When ACLY is functional, ACSS2 is not required, suggesting acetate is not an obligate metabolic substrate for CD8 T cell function. However, loss of ACLY renders CD8 T cells dependent on acetate (via ACSS2) to maintain acetyl-CoA production and effector function. Together, ACLY and ACSS2 coordinate cytosolic acetyl-CoA production in CD8 T cells to maintain chromatin accessibility and T cell effector function.


Assuntos
ATP Citrato (pro-S)-Liase , Acetatos , Acetilcoenzima A , Linfócitos T CD8-Positivos , Cromatina , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Animais , Cromatina/metabolismo , Acetilcoenzima A/metabolismo , ATP Citrato (pro-S)-Liase/metabolismo , ATP Citrato (pro-S)-Liase/genética , Camundongos , Acetatos/metabolismo , Acetato-CoA Ligase/metabolismo , Acetato-CoA Ligase/genética , Acetilação , Camundongos Knockout , Citosol/metabolismo , Histonas/metabolismo
9.
Emerg Microbes Infect ; 10(1): 51-65, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33306459

RESUMO

COVID-19 is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and declared by the World Health Organization a global public health emergency. Among the severe outbreaks across South America, Uruguay has become known for curtailing SARS-CoV-2 exceptionally well. To understand the SARS-CoV-2 introductions, local transmissions, and associations with genomic and clinical parameters in Uruguay, we sequenced the viral genomes of 44 outpatients and inpatients in a private healthcare system in its capital, Montevideo, from March to May 2020. We performed a phylogeographic analysis using sequences from our cohort and other studies that indicate a minimum of 23 independent introductions into Uruguay, resulting in five major transmission clusters. Our data suggest that most introductions resulting in chains of transmission originate from other South American countries, with the earliest seeding of the virus in late February 2020, weeks before the borders were closed to all non-citizens and a partial lockdown implemented. Genetic analyses suggest a dominance of S and G clades (G, GH, GR) that make up >90% of the viral strains in our study. In our cohort, lethal outcome of SARS-CoV-2 infection significantly correlated with arterial hypertension, kidney failure, and ICU admission (FDR < 0.01), but not with any mutation in a structural or non-structural protein, such as the spike D614G mutation. Our study contributes genetic, phylodynamic, and clinical correlation data about the exceptionally well-curbed SARS-CoV-2 outbreak in Uruguay, which furthers the understanding of disease patterns and regional aspects of the pandemic in Latin America.


Assuntos
COVID-19/complicações , Mutação , SARS-CoV-2/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , COVID-19/virologia , Surtos de Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , Uruguai/epidemiologia , Adulto Jovem
10.
Cell Rep ; 33(8): 108430, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33238131

RESUMO

Neutralizing antibodies (nAbs) to highly variable viral pathogens show remarkable diversification during infection, resulting in an "arms race" between virus and host. Studies of nAb lineages have shown how somatic hypermutation (SHM) in immunoglobulin (Ig)-variable regions enables maturing antibodies to neutralize emerging viral escape variants. However, the Ig-constant region (which determines isotype) can also influence epitope recognition. Here, we use longitudinal deep sequencing of an HIV-directed nAb lineage, CAP88-CH06, and identify several co-circulating isotypes (IgG3, IgG1, IgA1, IgG2, and IgA2), some of which share identical variable regions. First, we show that IgG3 and IgA1 isotypes are better able to neutralize longitudinal autologous viruses and epitope mutants than can IgG1. Second, detrimental class-switch recombination (CSR) events that resulted in reduced neutralization can be rescued by further CSR, which we term "switch redemption." Thus, CSR represents an additional immunological mechanism to counter viral escape from HIV-specific antibody responses.


Assuntos
HIV-1/imunologia , Switching de Imunoglobulina/imunologia , Testes de Neutralização/métodos , Humanos
11.
medRxiv ; 2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33052352

RESUMO

COVID-19 is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and declared by the World Health Organization a global public health emergency. Among the severe outbreaks across South America, Uruguay has become known for curtailing SARS-CoV-2 exceptionally well. To understand the SARS-CoV-2 introductions, local transmissions, and associations with genomic and clinical parameters in Uruguay, we sequenced the viral genomes of 44 outpatients and inpatients in a private healthcare system in its capital, Montevideo, from March to May 2020. We performed a phylogeographic analysis using sequences from our cohort and other studies that indicate a minimum of 23 independent introductions into Uruguay, resulting in five major transmission clusters. Our data suggest that most introductions resulting in chains of transmission originate from other South American countries, with the earliest seeding of the virus in late February 2020, weeks before the borders were closed to all non-citizens and a partial lockdown implemented. Genetic analyses suggest a dominance of S and G clades (G, GH, GR) that make up >90% of the viral strains in our study. In our cohort, lethal outcome of SARS-CoV-2 infection significantly correlated with arterial hypertension, kidney failure, and ICU admission (FDR < 0.01), but not with any mutation in a structural or non-structural protein, such as the spike D614G mutation. Our study contributes genetic, phylodynamic, and clinical correlation data about the exceptionally well-curbed SARS-CoV-2 outbreak in Uruguay, which furthers the understanding of disease patterns and regional aspects of the pandemic in Latin America.

12.
Bioinform Biol Insights ; 13: 1177932219882347, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-35173421

RESUMO

Next-generation sequencing (NGS) technologies have revolutionized biological research by generating genomic data that were once unaffordable by traditional first-generation sequencing technologies. These sequencing methodologies provide an opportunity for in-depth analyses of host and pathogen genomes as they are able to sequence millions of templates at a time. However, these large datasets can only be efficiently explored using bioinformatics analyses requiring huge data storage and computational resources adapted for high-performance processing. High-performance computing allows for efficient handling of large data and tasks that may require multi-threading and prolonged computational times, which is not feasible with ordinary computers. However, high-performance computing resources are costly and therefore not always readily available in low-income settings. We describe the establishment of an affordable high-performance computing bioinformatics cluster consisting of 3 nodes, constructed using ordinary desktop computers and open-source software including Linux Fedora, SLURM Workload Manager, and the Conda package manager. For the analysis of large antibody sequence datasets and for complex viral phylodynamic analyses, the cluster out-performed desktop computers. This has demonstrated that it is possible to construct high-performance computing capacity capable of analyzing large NGS data from relatively low-cost hardware and entirely free (open-source) software, even in resource-limited settings. Such a cluster design has broad utility beyond bioinformatics to other studies that require high-performance computing.

13.
Cell Rep ; 25(11): 3123-3135.e6, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30540944

RESUMO

Antibodies that bind residue K169 in the V2 region of the HIV-1 envelope correlated with reduced risk of infection in the RV144 vaccine trial but were restricted to two ED-motif-encoding light chain genes. Here, we identify an HIV-infected donor with high-titer V2 peptide-binding antibodies and isolate two antibody lineages (CAP228-16H/19F and CAP228-3D) that mediate potent antibody-dependent cell-mediated cytotoxicity (ADCC). Both lineages use the IGHV5-51 heavy chain germline gene, similar to the RV144 antibody CH58, but one lineage (CAP228-16H/19F) uses a light chain without the ED motif. A cocrystal structure of CAP228-16H bound to a V2 peptide identified a IGLV3-21 gene-encoded DDxD motif that is used to bind K169, with a mechanism that allows CAP228-16H to recognize more globally relevant V2 immunotypes. Overall, these data further our understanding of the development of cross-reactive, V2-binding, antiviral antibodies and effectively expand the human light chain repertoire able to respond to RV144-like immunogens.


Assuntos
Vacinas contra a AIDS/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/química , Infecções por HIV/imunologia , Infecções por HIV/virologia , Cadeias Leves de Imunoglobulina/metabolismo , Lisina/metabolismo , Alelos , Sequência de Aminoácidos , Anticorpos Anti-HIV/isolamento & purificação , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Cadeias Leves de Imunoglobulina/química , Modelos Moleculares , Peptídeos/metabolismo , Ligação Proteica , Doadores de Tecidos
14.
Virology ; 498: 257-264, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27619929

RESUMO

Tomato yellow leaf curl virus (TYLCV) seriously impacts tomato production throughout tropical and sub-tropical regions of the world. It has a broad geographical distribution and continues to spread to new regions in the Indian and Pacific Oceans including Australia, New Caledonia and Mauritius. We undertook a temporally-scaled, phylogeographic analysis of all publicly available, full genome sequences of TYLCV, together with 70 new genome sequences from Australia, Iran and Mauritius. This revealed that whereas epidemics in Australia and China likely originated through multiple independent viral introductions from the East-Asian region around Japan and Korea, the New Caledonian epidemic was seeded by a variant from the Western Mediterranean region and the Mauritian epidemic by a variant from the neighbouring island of Reunion. Finally, we show that inter-continental scale movements of TYLCV to East Asia have, at least temporarily, ceased, whereas long-distance movements to the Americas and Australia are probably still ongoing.


Assuntos
Begomovirus/classificação , Begomovirus/genética , Filogenia , Filogeografia , Doenças das Plantas/virologia , Teorema de Bayes , Evolução Molecular , Genoma Viral , Mutação , Recombinação Genética
15.
Virus Evol ; 1(1): vev009, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27774281

RESUMO

Banana bunchy top virus (BBTV; family Nanoviridae, genus Babuvirus) is a multi-component single-stranded DNA virus, which infects banana plants in many regions of the world, often resulting in large-scale crop losses. We analyzed 171 banana leaf samples from fourteen countries and recovered, cloned, and sequenced 855 complete BBTV components including ninety-four full genomes. Importantly, full genomes were determined from eight countries, where previously no full genomes were available (Samoa, Burundi, Republic of Congo, Democratic Republic of Congo, Egypt, Indonesia, the Philippines, and the USA [HI]). Accounting for recombination and genome component reassortment, we examined the geographic structuring of global BBTV populations to reveal that BBTV likely originated in Southeast Asia, that the current global hotspots of BBTV diversity are Southeast Asia/Far East and India, and that BBTV populations circulating elsewhere in the world have all potentially originated from infrequent introductions. Most importantly, we find that rather than the current global BBTV distribution being due to increases in human-mediated movements of bananas over the past few decades, it is more consistent with a pattern of infrequent introductions of the virus to different parts of the world over the past 1,000 years.

16.
J Mol Microbiol Biotechnol ; 22(5): 277-86, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23037858

RESUMO

A shotgun metagenomic library was constructed from termite hindgut symbionts and subsequently screened for esterase activities. A total of 68 recombinant clones conferring esterolytic phenotypes were identified, of which the 14 most active were subcloned and sequenced. The nucleotide lengths of the esterase-encoding open reading frames (ORFs) ranged from 783 to 2,592 bp and encoded proteins with predicted molecular masses of between 28.8 and 97.5 kDa. The highest identity scores in the GenBank database, from a global amino acid alignment ranged from 39 to 83%. The identified ORFs revealed the presence of the G-X-S-X-D, G-D-S-X, and S-X-X-K sequence motifs that have been reported to harbour a catalytic serine residue in other previously reported esterase primary structures. Five of the ORFs (EstT5, EstT7, EstT9, EstT10, and EstT12) could not be classified into any of the original eight esterase families. One of the ORFs (EstT9) showed a unique primary structure consisting of an amidohydrolase-esterase fusion. Six of the 14 esterase-encoding genes were recombinantly expressed in Escherichia coli and the purified enzymes exhibited temperature optima of between 40-50°C. Substrate-profiling studies revealed that the characterised enzymes were 'true' carboxylesterases based on their preferences for short to medium chain length p-nitrophenyl ester substrates. This study has demonstrated a successful application of a metagenomic approach in accessing novel esterase-encoding genes from the gut of termites that could otherwise have been missed by classical culture enrichment approaches.


Assuntos
Carboxilesterase/metabolismo , Gammaproteobacteria/enzimologia , Isópteros/microbiologia , Metagenômica/métodos , Simbiose , Sequência de Aminoácidos , Animais , Sequência de Bases , Carboxilesterase/genética , Ativação Enzimática , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Genes Bacterianos , Variação Genética , Fases de Leitura Aberta , Filogenia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA