Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Med Genet A ; 167A(9): 2201-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25944787

RESUMO

Small chromosomal duplications involving 7q36.3 have rarely been reported. This clinical report describes four individuals from a three-generation family with agenesis of the corpus callosum (ACC) and a 0.73 Mb duplication of 7q36.3 detected by array CGH. The 7q36.3 duplication involves two genes: RNA Binding Motif Protein 33 (RBM33) and Sonic Hedgehog (SHH). Most affected family members had mild intellectual disability or borderline intellectual functioning, macrocephaly, a broad forehead, and widely spaced eyes. Two individuals had a Chiari type I malformation. This is the first family reported with ACC associated with a small duplication of these genes. While we cannot establish causation for the relationship between any single gene and the ACC in this family, there is a role for SHH in the formation of the corpus callosum through correct patterning and assembly of the commissural plate, and these data concur with vertebrate studies showing that a gain of SHH expands the facial primordium.


Assuntos
Agenesia do Corpo Caloso/genética , Duplicação Cromossômica/genética , Cromossomos Humanos Par 7/genética , Predisposição Genética para Doença/genética , Adulto , Família , Feminino , Proteínas Hedgehog/genética , Humanos , Lactente , Deficiência Intelectual/genética , Pessoa de Meia-Idade
2.
Evol Appl ; 14(5): 1403-1420, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34025775

RESUMO

Mixed-stock analyses using genetic markers have informed fisheries management in cases where strong genetic differentiation occurs among local spawning populations, yet many fisheries are supported by multiple, weakly differentiated stocks. Freshwater fisheries exemplify this problem, with many populations supported by multiple stocks of young evolutionary age and isolated across small spatial scales. Consequently, attempts to conduct genetic mixed-stock analyses of inland fisheries have often been unsuccessful. Advances in genomic sequencing offer the ability to discriminate among populations with weak population structure, providing the necessary resolution to conduct mixed-stock assignment among previously indistinguishable stocks. We used genomic data to conduct a mixed-stock analysis of eastern Lake Erie's commercial and recreational walleye (Sander vitreus) fisheries and estimate the relative harvest of weakly differentiated stocks (pairwise F ST < 0.01). Using RAD-capture (Rapture), we sequenced and genotyped individuals from western and eastern basin local spawning stocks at 12,081 loci with 95% reassignment accuracy, which was not possible in the past using microsatellite markers. A baseline assessment of 395 walleye from 11 spawning stocks identified three reporting groups and refined previous assessments of gene flow among walleye stocks. Genetic assignment of 1,075 walleye harvested in eastern Lake Erie's recreational and commercial fisheries indicated that western basin stocks constituted the majority of harvest during the peak walleye fishing season (July-September), whereas eastern basin individuals comprised much of the early season harvest (May-June). Clear spatial structure in harvest composition existed; catches in more easterly sites contained more individuals of eastern basin origin than did more westerly sites. Our study provides important stock contribution estimates for Lake Erie fishery management and demonstrates the utility of genomic data to facilitate mixed-stock analysis in exploited fish populations having weak population structure or limited existing genetic resources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA