Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 609(7929): 931-935, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36171384

RESUMO

The hallmark of topological insulators (TIs) is the scatter-free propagation of waves in topologically protected edge channels1. This transport is strictly chiral on the outer edge of the medium and therefore capable of bypassing sharp corners and imperfections, even in the presence of substantial disorder. In photonics, two-dimensional (2D) topological edge states have been demonstrated on several different platforms2-4 and are emerging as a promising tool for robust lasers5, quantum devices6-8 and other applications. More recently, 3D TIs were demonstrated in microwaves9 and  acoustic waves10-13, where the topological protection in the latter  is induced by dislocations. However, at optical frequencies, 3D photonic TIs have so far remained out of experimental reach. Here we demonstrate a photonic TI with protected topological surface states in three dimensions. The topological protection is enabled by a screw dislocation. For this purpose, we use the concept of synthetic dimensions14-17 in a 2D photonic waveguide array18 by introducing a further modal dimension to transform the system into a 3D topological system. The lattice dislocation endows the system with edge states propagating along 3D trajectories, with topological protection akin to strong photonic TIs19,20. Our work paves the way for utilizing 3D topology in photonic science and technology.

2.
Nat Mater ; 23(3): 377-382, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38195865

RESUMO

Topological insulators are a concept that originally stems from condensed matter physics. As a corollary to their hallmark protected edge transport, the conventional understanding of such systems holds that they are intrinsically closed, that is, that they are assumed to be entirely isolated from the surrounding world. Here, by demonstrating a parity-time-symmetric topological insulator, we show that topological transport exists beyond these constraints. Implemented on a photonic platform, our non-Hermitian topological system harnesses the complex interplay between a discrete coupling protocol and judiciously placed losses and, as such, inherently constitutes an open system. Nevertheless, even though energy conservation is violated, our system exhibits an entirely real eigenvalue spectrum as well as chiral edge transport. Along these lines, this work enables the study of the dynamical properties of topological matter in open systems without the instability arising from complex spectra. Thus, it may inspire the development of compact active devices that harness topological features on-demand.

3.
Nat Mater ; 21(6): 634-639, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35484331

RESUMO

Topological theories have established a unique set of rules that govern the transport properties in a wide variety of wave-mechanical settings. In a marked departure from the established approaches that induce Floquet topological phases by specifically tailored discrete coupling protocols or helical lattice motions, we introduce a class of bimorphic Floquet topological insulators that leverage connective chains with periodically modulated on-site potentials to reveal rich topological features in the system. In exploring a 'chain-driven' generalization of the archetypical Floquet honeycomb lattice, we identify a rich phase structure that can host multiple non-trivial topological phases associated simultaneously with both Chern-type and anomalous chiral states. Experiments carried out in photonic waveguide lattices reveal a strongly confined helical edge state that, owing to its origin in bulk flat bands, can be set into motion in a topologically protected fashion, or halted at will, without compromising its adherence to individual lattice sites.

4.
Nat Mater ; 19(8): 855-860, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32203461

RESUMO

Much of the recent attention directed towards topological insulators is motivated by their hallmark feature of protected chiral edge states. In electronic (or fermionic) topological insulators, these states originate from time-reversal symmetry and allow carriers with opposite spin-polarization to propagate in opposite directions at the edge of an insulating bulk. By contrast, photonic (or bosonic) systems are generally assumed to be precluded from supporting edge states that are intrinsically protected by time-reversal symmetry. Here, we experimentally demonstrate counter-propagating chiral states at the edge of a time-reversal-symmetric photonic waveguide structure. The pivotal step in our approach is the design of a Floquet driving protocol that incorporates effective fermionic time-reversal symmetry, enabling the realization of the photonic version of an electronic topological insulator. Our findings allow for fermionic properties to be harnessed in bosonic systems, thereby offering alternative opportunities for photonics as well as acoustics, mechanical waves and cold atoms.

5.
Opt Lett ; 45(6): 1459-1462, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32163991

RESUMO

We describe topological edge solitons in a continuous dislocated Lieb array of helical waveguides. The linear Floquet spectrum of this structure is characterized by the presence of two topological gaps with edge states residing in them. A focusing nonlinearity enables families of topological edge solitons bifurcating from the linear edge states. Such solitons are localized both along and across the edge of the array. Due to the nonmonotonic dependence of the propagation constant of the edge states on the Bloch momentum, one can construct topological edge solitons that either propagate in different directions along the same boundary or do not move. This allows us to study collisions of edge solitons moving in opposite directions. Such solitons always interpenetrate each other without noticeable radiative losses; however, they exhibit a spatial shift that depends on the initial phase difference.

6.
Science ; 376(6597): 1114-1119, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35549309

RESUMO

Topological insulators constitute a newly characterized state of matter that contains scatter-free edge states surrounding an insulating bulk. Conventional wisdom regards the insulating bulk as essential, because the invariants that describe the topological properties of the system are defined therein. Here, we study fractal topological insulators based on exact fractals composed exclusively of edge sites. We present experimental proof that, despite the lack of bulk bands, photonic lattices of helical waveguides support topologically protected chiral edge states. We show that light transport in our topological fractal system features increased velocities compared with the corresponding honeycomb lattice. By going beyond the confines of the bulk-boundary correspondence, our findings pave the way toward an expanded perception of topological insulators and open a new chapter of topological fractals.

7.
Sci Adv ; 7(9)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33637523

RESUMO

Graph representations are a powerful concept for solving complex problems across natural science, as patterns of connectivity can give rise to a multitude of emergent phenomena. Graph-based approaches have proven particularly fruitful in quantum communication and quantum search algorithms in highly branched quantum networks. Here, we introduce a previously unidentified paradigm for the direct experimental realization of excitation dynamics associated with three-dimensional networks by exploiting the hybrid action of spatial and polarization degrees of freedom of photon pairs in complex waveguide circuits with tailored birefringence. This testbed for the experimental exploration of multiparticle quantum walks on complex, highly connected graphs paves the way toward exploiting the applicative potential of fermionic dynamics in integrated quantum photonics.

8.
Phys Rev E ; 102(3-1): 032207, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33075910

RESUMO

We investigate analytically and numerically the existence and dynamical stability of different localized modes in a two-dimensional photonic lattice comprising a square plaquette inscribed in the dodecagon lattices. The eigenvalue spectrum of the underlying linear lattice is characterized by a net formed of one flat band and four dispersive bands. By tailoring the intersite coupling coefficient ratio, opening of gaps between two pairs of neighboring dispersive bands can be induced, while the fully degenerate flat band characterized by compact eigenmodes stays nested between two inner dispersive bands. The nonlinearity destabilizes the compact modes and gives rise to unique families of localized modes in the newly opened gaps, as well as in the semi-infinite gaps. The governing mechanism of mode localization in that case is the light energy self-trapping effect. We have shown the stability of a few families of nonlinear modes in gaps. The suggested lattice model may serve for probing various artificial flat-band systems such as ultracold atoms in optical lattices, periodic electronic networks, and polariton condensates.

9.
Science ; 370(6517): 701-704, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33154138

RESUMO

A hallmark feature of topological insulators is robust edge transport that is impervious to scattering at defects and lattice disorder. We demonstrate a topological system, using a photonic platform, in which the existence of the topological phase is brought about by optical nonlinearity. The lattice structure remains topologically trivial in the linear regime, but as the optical power is increased above a certain power threshold, the system is driven into the topologically nontrivial regime. This transition is marked by the transient emergence of a protected unidirectional transport channel along the edge of the structure. Our work studies topological properties of matter in the nonlinear regime, providing a possible route for the development of compact devices that harness topological features in an on-demand fashion.

10.
Nat Commun ; 10(1): 435, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683867

RESUMO

With the discovery of [Formula: see text]-symmetric quantum mechanics, it was shown that even non-Hermitian systems may exhibit entirely real eigenvalue spectra. This finding did not only change the perception of quantum mechanics itself, it also significantly influenced the field of photonics. By appropriately designing one-dimensional distributions of gain and loss, it was possible to experimentally verify some of the hallmark features of [Formula: see text]-symmetry using electromagnetic waves. Nevertheless, an experimental platform to study the impact of [Formula: see text] -symmetry in two spatial dimensions has so far remained elusive. We break new grounds by devising a two-dimensional [Formula: see text]-symmetric system based on photonic waveguide lattices with judiciously designed refractive index landscape and alternating loss. With this system at hand, we demonstrate a non-Hermitian two-dimensional topological phase transition that is closely linked to the emergence of topological mid-gap edge states.

11.
Nat Commun ; 8: 13756, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28051080

RESUMO

Topological insulators are a new class of materials that exhibit robust and scatter-free transport along their edges - independently of the fine details of the system and of the edge - due to topological protection. To classify the topological character of two-dimensional systems without additional symmetries, one commonly uses Chern numbers, as their sum computed from all bands below a specific bandgap is equal to the net number of chiral edge modes traversing this gap. However, this is strictly valid only in settings with static Hamiltonians. The Chern numbers do not give a full characterization of the topological properties of periodically driven systems. In our work, we implement a system where chiral edge modes exist although the Chern numbers of all bands are zero. We employ periodically driven photonic waveguide lattices and demonstrate topologically protected scatter-free edge transport in such anomalous Floquet topological insulators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA