RESUMO
Snakes are a phylogenetically diverse (> 3500 species) clade of gape-limited predators that consume diverse prey and have considerable ontogenetic and interspecific variation in size, but empirical data on maximal gape are very limited. To test how overall size predicts gape, we quantified the scaling relationships between maximal gape, overall size, and several cranial dimensions for a wide range of sizes (mass 8-64,100 g) for two large, invasive snake species: Burmese pythons (Python molorus bivittatus) and brown treesnakes (Boiga irregularis). Although skull size scaled with negative allometry relative to overall size, isometry and positive allometry commonly occurred for other measurements. For similar snout-vent lengths (SVL), the maximal gape areas of Burmese pythons were approximately 4-6 times greater than those of brown treesnakes, mainly as a result of having a significantly larger relative contribution to gape by the intermandibular soft tissues (43% vs. 17%). In both snake species and for all types of prey, the scaling relationships predicted that relative prey mass (RPM) at maximal gape decreased precipitously with increased overall snake size. For a given SVL or mass, the predicted maximal values of RPM of the Burmese pythons exceeded those of brown treesnakes for all prey types, and predicted values of RPM were usually least for chickens, greatest for limbed reptiles and intermediate for mammals. The pythons we studied are noteworthy for having large overall size and gape that is large even after correcting for overall size, both of which could facilitate some large individuals (SVL = 5 m) exploiting very large vertebrate prey (e.g., deer > 50 kg). Although brown treesnakes had longer quadrate bones, Burmese pythons had larger absolute and larger relative gape as a combined result of larger overall size, larger relative head size, and most importantly, greater stretch of the soft tissues.
RESUMO
The coccidian protozoan, Caryospora cheloniae, has been associated with severe enteritis and encephalitis in immature farm-raised green turtles (Chelonia mydas) in the Cayman Islands, immature green turtles off the coast of Florida, and immature stranded sea turtles in Australia. An effective anti-coccidial drug that is both orally absorbed and well-distributed throughout the body is needed for treatment of turtles diagnosed with coccidiosis in rehabilitation facilities. Ponazuril is a triazine antiprotozoal drug that is approved in the USA for the treatment of another Apicomplexan, Sarcocystis neurona, and has also been successfully used in the therapy of other coccidian parasites. The objective of this study was to perform an oral dose-ranging pilot study (10-100 mg/kg of body weight ponazuril) in green turtles (N = 9), followed by oral administration of ponazuril at 100 mg/kg body weight (N = 8) to assess its disposition. Another goal of this study was to optimize the method of oral drug administration to green turtles. Plasma ponazuril concentrations were quantified using high performance liquid chromatography (HPLC). Standard compartmental models were fit to the data. Ponazuril was absorbed after oral administration at 100 mg/kg BW, with a maximum plasma concentration of 3.3 µg/ml. Dose-dependent pharmacokinetic parameters only weakly correlated with the dose rate, apparently due to considerable pharmacokinetic variability observed between turtles. Administration of ponazuril in gelatin capsules using a balling gun was deemed the least variable and most successful method of drug administration. Further studies are needed to evaluate the safety and efficacy of ponazuril in sea turtles with coccidiosis.
Assuntos
Tartarugas , Animais , Modelos Epidemiológicos , Projetos Piloto , TriazinasRESUMO
CASE DESCRIPTION: Acute pulmonary hemorrhage developed during isoflurane anesthesia in 2 Himalayan cats undergoing routine dental cleaning and prophylaxis. CLINICAL FINDINGS: The cats were siblings and lived together. In both cats, results of pre-operative physical examinations and laboratory testing were unremarkable. Blood pressure and oxygen saturation were within reference ranges throughout the dental procedure. Approximately 15 to 20 minutes after administration of isoflurane was begun, frothy blood was noticed within the endotracheal tube. Blood was suctioned from the endotracheal tube, and the cats were allowed to recover from anesthesia. TREATMENT AND OUTCOME: 1 cat initially responded to supportive care but developed a second episode of spontaneous pulmonary hemorrhage approximately 30 hours later and died. The other cat responded to supportive care and was discharged after 4 days, but its condition deteriorated, and the cat died 10 days later. Subsequently, it was discovered that the home was severely contaminated with mold as a result of storm damage that had occurred approximately 7 months previously. Retrospective analysis of banked serum from the cats revealed satratoxin G, a biomarker for Stachybotrys chartarum, commonly referred to as "toxic black mold." CLINICAL RELEVANCE: Findings highlight the potential risk of acute pulmonary hemorrhage in animals living in an environment contaminated with mold following flood damage.
Assuntos
Microbiologia do Ar , Doenças do Gato/etiologia , Hemorragia/veterinária , Pneumopatias/veterinária , Micoses/veterinária , Stachybotrys/patogenicidade , Anestésicos Inalatórios/administração & dosagem , Animais , Doenças do Gato/microbiologia , Gatos , Evolução Fatal , Feminino , Hemorragia/microbiologia , Isoflurano/administração & dosagem , Pneumopatias/microbiologia , Masculino , Micoses/complicações , Micoses/etiologia , MicotoxinasRESUMO
Beginning in October 2000, subadult loggerhead sea turtles Caretta caretta showing clinical signs of a neurological disorder were found in waters off south Florida, USA. Histopathology indicated generalized and neurologic spirorchiidiasis. In loggerhead sea turtles (LST) with neurospirorchiidiasis, adult trematodes were found in the meninges of the brain and spinal cord of 7 and 3 affected turtles respectively, and multiple encephalic intravascular or perivascular eggs were associated with granulomatous or mixed leukocytic inflammation, vasculitis, edema, axonal degeneration and occasional necrosis. Adult spirorchiids were dissected from meningeal vessels of 2 of 11 LST brains and 1 of 10 spinal cords and were identified as Neospirorchis sp. Affected LST were evaluated for brevetoxins, ciguatoxins, saxitoxins, domoic acid and palytoxin. While tissues from 7 of 20 LST tested positive for brevetoxins, the levels were not considered to be in a range causing acute toxicosis. No known natural (algal blooms) or anthropogenic (pollutant spills) stressors co-occurred with the turtle mortality. While heavy metal toxicosis and organophosphate toxicosis were also investigated as possible causes, there was no evidence for their involvement. We speculate that the clinical signs and pathologic changes seen in the affected LST resulted from combined heavy spirorchiid parasitism and possible chronic exposure to a novel toxin present in the diet of LST.
Assuntos
Doenças do Sistema Nervoso/veterinária , Trematódeos/isolamento & purificação , Infecções por Trematódeos/veterinária , Tartarugas/parasitologia , Animais , Encéfalo/parasitologia , Colinesterases/análise , Feminino , Florida , Rim/química , Fígado/química , Masculino , Toxinas Marinhas/análise , Metais Pesados/análise , Músculo Esquelético/química , Músculo Esquelético/patologia , Doenças do Sistema Nervoso/parasitologia , Doenças do Sistema Nervoso/patologia , Oxocinas/análise , Nervo Isquiático/patologia , Trematódeos/patogenicidade , Infecções por Trematódeos/patologiaRESUMO
In an attempt to identify critical health issues affecting the survival of endangered leatherback sea turtles (Dermochelys coriacea), a prospective study was conducted in several dead-in-nest hatchlings and captive posthatchlings to examine pathologic changes and presence of pathogenic microorganisms. Numerous histopathologic changes were identified. Although bacterial etiologies were suspected in deaths of captive individuals, a single causative organism was not identified but rather, a mixed population of bacterial flora was cultured. Muscle degeneration observed in most samples implicates a potential environmental factor in species survival and needs future investigation.