Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Opt Express ; 23(7): 9040-51, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25968739

RESUMO

Double-clad fibers (DCF) have many advantages in fibered confocal microscopes as they allow for coherent illumination through their core and partially coherent detection through their inner cladding. We report a double-clad fiber coupler (DCFC) made from small inner cladding DCF that preserves optical sectioning in confocal microscopy while increasing collection efficiency and reducing coherent effects. Due to the small inner cladding, previously demonstrated fabrication methods could not be translated to this coupler's fabrication. To make such a coupler possible, we introduce in this article three new design concepts. The resulting DCFC fabricated using two custom fibers and a modified fusion-tapering technique achieves high multimodal extraction (≥70 %) and high single mode transmission (≥80 %). Its application to reflectance confocal microscopy showed a 30-fold increase in detected signal intensity, a 4-fold speckle contrast reduction with a penalty in axial resolution of a factor 2. This coupler paves the way towards more efficient confocal microscopes for clinical applications.

2.
Opt Express ; 21(6): 6873-9, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23546069

RESUMO

We present a novel measurement scheme using a double-clad fiber coupler (DCFC) and a fiber Bragg grating (FBG) to resolve cladding modes. Direct measurement of the optical spectra and power in the cladding modes is obtained through the use of a specially designed DCFC spliced to a highly reflective FBG written into slightly etched standard photosensitive single mode fiber to match the inner cladding diameter of the DCFC. The DCFC is made by tapering and fusing two double-clad fibers (DCF) together. The device is capable of capturing backward propagating low and high order cladding modes simply and efficiently. Also, we demonstrate the capability of such a device to measure the surrounding refractive index (SRI) with an extremely high sensitivity of 69.769 ± 0.035 µW/RIU and a resolution of 1.433 × 10(-5) ± 8 × 10(-9) RIU between 1.37 and 1.45 RIU. The device provides a large SRI operating range from 1.30 to 1.45 RIU with sufficient discrimination for all individual captured cladding modes. The proposed scheme can be adapted to many different types of bend, temperature, refractive index and other evanescent wave based sensors.


Assuntos
Análise de Falha de Equipamento/instrumentação , Análise de Falha de Equipamento/métodos , Tecnologia de Fibra Óptica/instrumentação , Lentes , Refratometria/instrumentação , Refratometria/métodos , Desenho de Equipamento
3.
Opt Lett ; 38(3): 266-8, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23381406

RESUMO

To the best of our knowledge, we present the first needle probe for combined optical coherence tomography (OCT), and fluorescence imaging. The probe uses double-clad fiber (DCF) that guides the OCT signal and fluorescence excitation light in the core and collects and guides the returning fluorescence in the large-diameter multimode inner cladding. It is interfaced to a 1310 nm swept-source OCT system that has been modified to enable simultaneous 488 nm fluorescence excitation and >500 nm emission detection by using a DCF coupler to extract the returning fluorescence signal in the inner cladding with high efficiency. We present imaging results from an excised sheep lung with fluorescein solution infused through the vasculature. We were able to identify alveoli, bronchioles, and blood vessels. The results demonstrate that the combined OCT plus fluorescence needle images provide improved tissue differentiation over OCT alone.


Assuntos
Espectrometria de Fluorescência/métodos , Tomografia de Coerência Óptica/métodos , Animais , Artérias/patologia , Vasos Sanguíneos/patologia , Bronquíolos/patologia , Meios de Contraste/farmacologia , Endoscopia/métodos , Desenho de Equipamento , Fluorescência , Imageamento Tridimensional , Pulmão/irrigação sanguínea , Pulmão/patologia , Agulhas , Imagem Óptica/métodos , Alvéolos Pulmonares/patologia , Ovinos
4.
Opt Lett ; 38(22): 4911-4, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24322164

RESUMO

We present a novel optical fiber surface plasmon resonance (SPR) sensor scheme using reflected guided cladding modes captured by a double-clad fiber coupler and excited in a gold-coated fiber with a tilted Bragg grating. This new interrogation approach, based on the reflection spectrum, provides an improvement in the operating range of the device over previous techniques. The device allows detection of SPR in the reflected guided cladding modes and also in the transmitted spectrum, allowing comparison with standard techniques. The sensor has a large operating range from 1.335 to 1.432 RIU, and a sensitivity of 510.5 nm/RIU. The device shows strong dependence on the polarization state of the guided core mode which can be used to turn the SPR on or off.

5.
Opt Lett ; 38(21): 4514-7, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24177133

RESUMO

We present an asymmetric double-clad fiber coupler (A-DCFC) exploiting a disparity in fiber etendues to exceed the equipartition limit (≤50% extraction of inner cladding multi-mode light). The A-DCFC is fabricated using two commercially available fibers and a custom fusion-tapering setup to achieve >70% extraction of multi-mode inner cladding light without affecting (>95% transmission) single-mode light propagation in the core. Imaging with the A-DCFC is demonstrated in a spectrally encoded imaging setup using a weakly backscattering biological sample. Other applications include the combination of optical coherence tomography with weak fluorescent or Raman scattering signals.


Assuntos
Endoscopia/instrumentação , Fibras Ópticas , Animais , Embrião de Mamíferos , Desenho de Equipamento , Camundongos
6.
Head Neck ; 41(12): 4171-4180, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31571306

RESUMO

BACKGROUND: Optical coherence tomography (OCT) is a noninvasive imaging modality that may reproduce the microarchitecture of tissues in real-time. This study examines whether OCT can render distinct images of thyroid, parathyroid glands, adipose tissue, and lymph nodes in both healthy and pathological states. METHODS: Twenty-seven patients undergoing thyroidectomy, parathyroidectomy, and/or neck dissection for thyroid cancer were recruited prospectively for imaging prior to histopathological analysis. RESULTS: Based on 122 imaged specimens, qualitative OCT descriptions were derived for healthy thyroid, parathyroid gland, adipose tissue, and lymph node. The frequencies at which distinguishing features were present for each tissue type were 88%, 83%, 100%, and 82%. OCT appearance of pathological specimens were also described. CONCLUSIONS: Healthy neck tissues have distinct OCT appearances, which could facilitate parathyroid identification during thyroidectomies. However, images of parathyroid adenomas could be confused with those of lymph nodes, and benign and malignant thyroid nodules could not be differentiated.


Assuntos
Tecido Adiposo/patologia , Linfonodos/patologia , Glândulas Paratireoides/patologia , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/cirurgia , Tecido Adiposo/diagnóstico por imagem , Adulto , Idoso , Feminino , Cabeça/diagnóstico por imagem , Cabeça/patologia , Humanos , Linfonodos/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Pescoço/diagnóstico por imagem , Pescoço/patologia , Esvaziamento Cervical/métodos , Glândulas Paratireoides/diagnóstico por imagem , Neoplasias das Paratireoides/patologia , Paratireoidectomia/métodos , Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/patologia , Nódulo da Glândula Tireoide/patologia , Tireoidectomia/métodos , Tomografia de Coerência Óptica/métodos
7.
Med Phys ; 45(1): 328-339, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29106741

RESUMO

PURPOSE: Raman spectroscopy is a promising cancer detection technique for surgical guidance applications. It can provide quantitative information relating to global tissue properties associated with structural, metabolic, immunological, and genetic biochemical phenomena in terms of molecular species including amino acids, lipids, proteins, and nucleic acid (DNA). To date in vivo Raman spectroscopy systems mostly included probes and biopsy needles typically limited to single-point tissue interrogation over a scale between 100 and 500 microns. The development of wider field handheld systems could improve tumor localization for a range of open surgery applications including brain, ovarian, and skin cancers. METHODS: Here we present a novel Raman spectroscopy implementation using a coherent imaging bundle of fibers to create a probe capable of reconstructing molecular images over mesoscopic fields of view. Detection is performed using linear scanning with a rotation mirror and an imaging spectrometer. Different slits widths were tested at the entrance of the spectrometer to optimize spatial and spectral resolution while preserving sufficient signal-to-noise ratios to detect the principal Raman tissue features. The nonbiological samples, calcite and polytetrafluoroethylene (PTFE), were used to characterize the performance of the system. The new wide-field probe was tested on ex vivo samples of calf brain and swine tissue. Raman spectral content of both tissue types were validated with data from the literature and compared with data acquired with a single-point Raman spectroscopy probe. The single-point probe was used as the gold standard against which the new instrument was benchmarked as it has already been thoroughly validated for biological tissue characterization. RESULT: We have developed and characterized a practical noncontact handheld Raman imager providing tissue information at a spatial resolution of 115 microns over a field of view >14 mm2 and a spectral resolution of 6 cm-1 over the whole fingerprint region. Typical integration time to acquire an entire Raman image over swine tissue was set to approximately 100 s. Spectra acquired with both probes (single-point and wide-field) showed good agreement, with a Pearson correlation factor >0.85 over different tissue categories. Protein and lipid content of imaged tissue were manifested into the measured spectra which correlated well with previous findings in the literature. An example of quantitative molecular map is presented for swine tissue and calf brain based on the ratio of protein-to-lipid content showing clear delineations between white and gray matter as well as between adipose and muscle tissue. CONCLUSION: We presented the development of a Raman imaging probe with a field of view of a few millimeters and a spatial resolution consistent with standard surgical imaging methods using an imaging bundle. Spectra acquired with the newly developed system on swine tissue and calf brain correlated well with an establish single-point probe and observed spectral features agreed with previous finding in the literature. The imaging probe has demonstrated its ability to reconstruct molecular images of soft tissues. The approach presented here has a lot of potential for the development of surgical Raman imaging probe to guide the surgeon during cancer surgery.


Assuntos
Análise Espectral Raman/instrumentação , Animais , Química Encefálica , Carbonato de Cálcio/química , Bovinos , Desenho de Equipamento , Politetrafluoretileno/química , Software , Suínos
8.
J Med Imaging (Bellingham) ; 4(4): 041306, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29057287

RESUMO

Optical coherence tomography (OCT) yields microscopic volumetric images representing tissue structures based on the contrast provided by elastic light scattering. Multipatient studies using OCT for detection of tissue abnormalities can lead to large datasets making quantitative and unbiased assessment of classification algorithms performance difficult without the availability of automated analytical schemes. We present a mathematical descriptor reducing the dimensionality of a classifier's input data, while preserving essential volumetric features from reconstructed three-dimensional optical volumes. This descriptor is used as the input of classification algorithms allowing a detailed exploration of the features space leading to optimal and reliable classification models based on support vector machine techniques. Using imaging dataset of paraffin-embedded tissue samples from 38 ovarian cancer patients, we report accuracies for cancer detection [Formula: see text] for binary classification between healthy fallopian tube and ovarian samples containing cancer cells. Furthermore, multiples classes of statistical models are presented demonstrating [Formula: see text] accuracy for the detection of high-grade serous, endometroid, and clear cells cancers. The classification approach reduces the computational complexity and needed resources to achieve highly accurate classification, making it possible to contemplate other applications, including intraoperative surgical guidance, as well as other depth sectioning techniques for fresh tissue imaging.

9.
J Biomed Opt ; 22(7): 76012, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28727868

RESUMO

The majority of high-grade serous ovarian cancers is now believed to originate in the fallopian tubes. Therefore, current practices include the pathological examination of excised fallopian tubes. Detection of tumors in the fallopian tubes using current clinical approaches remains difficult but is of critical importance to achieve accurate staging and diagnosis. Here, we present an intraoperative imaging system for the detection of human fallopian tube lesions. The system is based on optical coherence tomography (OCT) to access subepithelial tissue architecture. To demonstrate that OCT could identify lesions, we analyzed 180 OCT volumes taken from five different ovarian lesions and from healthy fallopian tubes, and compared them to standard pathological review. We demonstrated that qualitative features could be matched to pathological conditions. We then determined the feasibility of intraluminal imaging of intact human fallopian tubes by building a dedicated endoscopic single-fiber OCT probe to access the mucosal layer inside freshly excised specimens from five patients undergoing prophylactic surgeries. The probe insertion into the lumen acquired images over the entire length of the tubes without damaging the mucosa, providing the first OCT images of intact human fallopian tubes.


Assuntos
Tubas Uterinas/diagnóstico por imagem , Imageamento Tridimensional/instrumentação , Neoplasias Ovarianas/diagnóstico por imagem , Tomografia de Coerência Óptica , Feminino , Humanos , Mucosa/patologia
10.
Biomed Opt Express ; 7(3): 732-45, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27231585

RESUMO

A novel tri-modal microscope combining optical coherence tomography (OCT), spectrally encoded confocal microscopy (SECM) and fluorescence imaging is presented. This system aims at providing a tool for rapid identification of head and neck tissues during thyroid surgery. The development of a dual-wavelength polygon-based swept laser allows for synchronized, co-registered and simultaneous imaging with all three modalities. Further ameliorations towards miniaturization include a custom lens for optimal compromise between orthogonal imaging geometries as well as a double-clad fiber coupler for increased throughput. Image quality and co-registration is demonstrated on freshly excised swine head and neck tissue samples to illustrate the complementarity of the techniques for identifying signature cellular and structural features.

11.
Phys Med Biol ; 61(23): R370-R400, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27804917

RESUMO

There is an urgent need for improved techniques for disease detection. Optical spectroscopy and imaging technologies have potential for non- or minimally-invasive use in a wide range of clinical applications. The focus here, in vivo Raman spectroscopy (RS), measures inelastic light scattering based on interaction with the vibrational and rotational modes of common molecular bonds in cells and tissue. The Raman 'signature' can be used to assess physiological status and can also be altered by disease. This information can supplement existing diagnostic (e.g. radiological imaging) techniques for disease screening and diagnosis, in interventional guidance for identifying disease margins, and in monitoring treatment responses. Using fiberoptic-based light delivery and collection, RS is most easily performed on accessible tissue surfaces, either on the skin, in hollow organs or intra-operatively. The strength of RS lies in the high biochemical information content of the spectra, that characteristically show an array of very narrow peaks associated with specific chemical bonds. This results in high sensitivity and specificity, for example to distinguish malignant or premalignant from normal tissues. A critical issue is that the Raman signal is often very weak, limiting clinical use to point-by-point measurements. However, non-linear techniques using pulsed-laser sources have been developed to enable in vivo Raman imaging. Changes in Raman spectra with disease are often subtle and spectrally distributed, requiring full spectral scanning, together with the use of tissue classification algorithms that must be trained on large numbers of independent measurements. Recent advances in instrumentation and spectral analysis have substantially improved the clinical feasibility of RS, so that it is now being investigated with increased success in a wide range of cancer types and locations, as well as for non-oncological conditions. This review covers recent advances and continuing challenges, with emphasis on clinical translation.


Assuntos
Imagem Molecular/métodos , Neoplasias/diagnóstico , Análise Espectral Raman/métodos , Humanos , Imagem Molecular/instrumentação
12.
Biomed Opt Express ; 6(5): 1767-81, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26137379

RESUMO

Molecular imaging using optical techniques provides insight into disease at the cellular level. In this paper, we report on a novel dual-modality probe capable of performing molecular imaging by combining simultaneous three-dimensional optical coherence tomography (OCT) and two-dimensional fluorescence imaging in a hypodermic needle. The probe, referred to as a molecular imaging (MI) needle, may be inserted tens of millimeters into tissue. The MI needle utilizes double-clad fiber to carry both imaging modalities, and is interfaced to a 1310-nm OCT system and a fluorescence imaging subsystem using an asymmetrical double-clad fiber coupler customized to achieve high fluorescence collection efficiency. We present, to the best of our knowledge, the first dual-modality OCT and fluorescence needle probe with sufficient sensitivity to image fluorescently labeled antibodies. Such probes enable high-resolution molecular imaging deep within tissue.

13.
Biomed Opt Express ; 6(4): 1293-303, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25909013

RESUMO

Double-clad fiber (DCF) is herein used in conjunction with a double-clad fiber coupler (DCFC) to enable simultaneous and co-registered optical coherence tomography (OCT) and laser tissue coagulation. The DCF allows a single channel fiber-optic probe to be shared: i.e. the core propagating the OCT signal while the inner cladding delivers the coagulation laser light. We herein present a novel DCFC designed and built to combine both signals within a DCF (>90% of single-mode transmission; >65% multimode coupling). Potential OCT imaging degradation mechanisms are also investigated and solutions to mitigate them are presented. The combined DCFC-based system was used to induce coagulation of an ex vivo swine esophagus allowing a real-time assessment of thermal dynamic processes. We therefore demonstrate a DCFC-based system combining OCT imaging with laser coagulation through a single fiber, thus enabling both modalities to be performed simultaneously and in a co-registered manner. Such a system enables endoscopic image-guided laser marking of superficial epithelial tissues or laser thermal therapy of epithelial lesions in pathologies such as Barrett's esophagus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA