Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 327
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(26): e2405524121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38885378

RESUMO

Aminotransferases (ATs) are an ancient enzyme family that play central roles in core nitrogen metabolism, essential to all organisms. However, many of the AT enzyme functions remain poorly defined, limiting our fundamental understanding of the nitrogen metabolic networks that exist in different organisms. Here, we traced the deep evolutionary history of the AT family by analyzing AT enzymes from 90 species spanning the tree of life (ToL). We found that each organism has maintained a relatively small and constant number of ATs. Mapping the distribution of ATs across the ToL uncovered that many essential AT reactions are carried out by taxon-specific AT enzymes due to wide-spread nonorthologous gene displacements. This complex evolutionary history explains the difficulty of homology-based AT functional prediction. Biochemical characterization of diverse aromatic ATs further revealed their broad substrate specificity, unlike other core metabolic enzymes that evolved to catalyze specific reactions today. Interestingly, however, we found that these AT enzymes that diverged over billion years share common signatures of multisubstrate specificity by employing different nonconserved active site residues. These findings illustrate that AT family enzymes had leveraged their inherent substrate promiscuity to maintain a small yet distinct set of multifunctional AT enzymes in different taxa. This evolutionary history of versatile ATs likely contributed to the establishment of robust and diverse nitrogen metabolic networks that exist throughout the ToL. The study provides a critical foundation to systematically determine diverse AT functions and underlying nitrogen metabolic networks across the ToL.


Assuntos
Evolução Molecular , Filogenia , Transaminases , Especificidade por Substrato , Transaminases/genética , Transaminases/metabolismo , Domínio Catalítico/genética , Nitrogênio/metabolismo
2.
Plant J ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976238

RESUMO

Plants produce a staggering array of chemicals that are the basis for organismal function and important human nutrients and medicines. However, it is poorly defined how these compounds evolved and are distributed across the plant kingdom, hindering a systematic view and understanding of plant chemical diversity. Recent advances in plant genome/transcriptome sequencing have provided a well-defined molecular phylogeny of plants, on which the presence of diverse natural products can be mapped to systematically determine their phylogenetic distribution. Here, we built a proof-of-concept workflow where previously reported diverse tyrosine-derived plant natural products were mapped onto the plant tree of life. Plant chemical-species associations were mined from literature, filtered, evaluated through manual inspection of over 2500 scientific articles, and mapped onto the plant phylogeny. The resulting "phylochemical" map confirmed several highly lineage-specific compound class distributions, such as betalain pigments and Amaryllidaceae alkaloids. The map also highlighted several lineages enriched in dopamine-derived compounds, including the orders Caryophyllales, Liliales, and Fabales. Additionally, the application of large language models, using our manually curated data as a ground truth set, showed that post-mining processing can largely be automated with a low false-positive rate, critical for generating a reliable phylochemical map. Although a high false-negative rate remains a challenge, our study demonstrates that combining text mining with language model-based processing can generate broader phylochemical maps, which will serve as a valuable community resource to uncover key evolutionary events that underlie plant chemical diversity and enable system-level views of nature's millions of years of chemical experimentation.

3.
Plant Physiol ; 195(3): 2456-2471, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38498597

RESUMO

Synthetic biology provides emerging tools to produce valuable compounds in plant hosts as sustainable chemical production platforms. However, little is known about how supply and utilization of precursors is coordinated at the interface of plant primary and specialized metabolism, limiting our ability to efficiently produce high levels of target specialized metabolites in plants. L-Tyrosine is an aromatic amino acid precursor of diverse plant natural products including betalain pigments, which are used as the major natural food red colorants and more recently a visual marker for plant transformation. Here, we studied the impact of enhanced L-tyrosine supply on the production of betalain pigments by expressing arogenate dehydrogenase (TyrA) from table beet (Beta vulgaris, BvTyrAα), which has relaxed feedback inhibition by L-tyrosine. Unexpectedly, betalain levels were reduced when BvTyrAα was coexpressed with the betalain pathway genes in Nicotiana benthamiana leaves; L-tyrosine and 3,4-dihydroxy-L-phenylalanine (L-DOPA) levels were drastically elevated but not efficiently converted to betalains. An additional expression of L-DOPA 4,5-dioxygenase (DODA), but not CYP76AD1 or cyclo-DOPA 5-O-glucosyltransferase, together with BvTyrAα and the betalain pathway, drastically enhanced betalain production, indicating that DODA is a major rate-limiting step of betalain biosynthesis in this system. Learning from this initial test and further debottlenecking the DODA step maximized betalain yield to an equivalent or higher level than that in table beet. Our data suggest that balancing between enhanced supply ("push") and effective utilization ("pull") of precursor by alleviating a bottleneck step is critical in successful plant synthetic biology to produce high levels of target compounds.


Assuntos
Beta vulgaris , Betalaínas , Nicotiana , Plantas Geneticamente Modificadas , Tirosina , Betalaínas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Tirosina/metabolismo , Beta vulgaris/genética , Beta vulgaris/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Folhas de Planta/metabolismo , Folhas de Planta/genética , Dioxigenases/metabolismo , Dioxigenases/genética , Regulação da Expressão Gênica de Plantas , Levodopa/metabolismo
4.
Plant Cell ; 34(1): 557-578, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34623442

RESUMO

Dark-induced senescence provokes profound metabolic shifts to recycle nutrients and to guarantee plant survival. To date, research on these processes has largely focused on characterizing mutants deficient in individual pathways. Here, we adopted a time-resolved genome-wide association-based approach to characterize dark-induced senescence by evaluating the photochemical efficiency and content of primary and lipid metabolites at the beginning, or after 3 or 6 days in darkness. We discovered six patterns of metabolic shifts and identified 215 associations with 81 candidate genes being involved in this process. Among these associations, we validated the roles of four genes associated with glycine, galactinol, threonine, and ornithine levels. We also demonstrated the function of threonine and galactinol catabolism during dark-induced senescence. Intriguingly, we determined that the association between tyrosine contents and TYROSINE AMINOTRANSFERASE 1 influences enzyme activity of the encoded protein and transcriptional activity of the gene under normal and dark conditions, respectively. Moreover, the single-nucleotide polymorphisms affecting the expression of THREONINE ALDOLASE 1 and the amino acid transporter gene AVT1B, respectively, only underlie the variation in threonine and glycine levels in the dark. Taken together, these results allow us to present a very detailed model of the metabolic aspects of dark-induced senescence, as well as the process itself.


Assuntos
Arabidopsis/fisiologia , Escuridão , Genes de Plantas , Senescência Vegetal/genética , Estudo de Associação Genômica Ampla
5.
J Biol Chem ; 299(3): 102939, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702250

RESUMO

Aminotransferases (ATs) catalyze pyridoxal 5'-phosphate-dependent transamination reactions between amino donor and keto acceptor substrates and play central roles in nitrogen metabolism of all organisms. ATs are involved in the biosynthesis and degradation of both proteinogenic and nonproteinogenic amino acids and also carry out a wide variety of functions in photorespiration, detoxification, and secondary metabolism. Despite the importance of ATs, their functionality is poorly understood as only a small fraction of putative ATs, predicted from DNA sequences, are associated with experimental data. Even for characterized ATs, the full spectrum of substrate specificity, among many potential substrates, has not been explored in most cases. This is largely due to the lack of suitable high-throughput assays that can screen for AT activity and specificity at scale. Here we present a new high-throughput platform for screening AT activity using bioconjugate chemistry and mass spectrometry imaging-based analysis. Detection of AT reaction products is achieved by forming an oxime linkage between the ketone groups of transaminated amino donors and a probe molecule that facilitates mass spectrometry-based analysis using nanostructure-initiator mass spectrometry or MALDI-mass spectrometry. As a proof-of-principle, we applied the newly established method and found that a previously uncharacterized Arabidopsis thaliana tryptophan AT-related protein 1 is a highly promiscuous enzyme that can utilize 13 amino acid donors and three keto acid acceptors. These results demonstrate that this oxime-mass spectrometry imaging AT assay enables high-throughput discovery and comprehensive characterization of AT enzymes, leading to an accurate understanding of the nitrogen metabolic network.


Assuntos
Aminoácidos , Ensaios Enzimáticos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Transaminases , Aminoácidos/metabolismo , Especificidade por Substrato , Transaminases/química , Transaminases/metabolismo , Ensaios Enzimáticos/métodos , Arabidopsis/enzimologia
6.
Plant Cell ; 33(3): 671-696, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33955484

RESUMO

The plant shikimate pathway directs bulk carbon flow toward biosynthesis of aromatic amino acids (AAAs, i.e. tyrosine, phenylalanine, and tryptophan) and numerous aromatic phytochemicals. The microbial shikimate pathway is feedback inhibited by AAAs at the first enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DHS). However, AAAs generally do not inhibit DHS activities from plant extracts and how plants regulate the shikimate pathway remains elusive. Here, we characterized recombinant Arabidopsis thaliana DHSs (AthDHSs) and found that tyrosine and tryptophan inhibit AthDHS2, but not AthDHS1 or AthDHS3. Mixing AthDHS2 with AthDHS1 or 3 attenuated its inhibition. The AAA and phenylpropanoid pathway intermediates chorismate and caffeate, respectively, strongly inhibited all AthDHSs, while the arogenate intermediate counteracted the AthDHS1 or 3 inhibition by chorismate. AAAs inhibited DHS activity in young seedlings, where AthDHS2 is highly expressed, but not in mature leaves, where AthDHS1 is predominantly expressed. Arabidopsis dhs1 and dhs3 knockout mutants were hypersensitive to tyrosine and tryptophan, respectively, while dhs2 was resistant to tyrosine-mediated growth inhibition. dhs1 and dhs3 also had reduced anthocyanin accumulation under high light stress. These findings reveal the highly complex regulation of the entry reaction of the plant shikimate pathway and lay the foundation for efforts to control the production of AAAs and diverse aromatic natural products in plants.


Assuntos
Plântula/metabolismo , Triptofano/metabolismo , Aminoácidos Dicarboxílicos/metabolismo , Arabidopsis/metabolismo , Cicloexenos/metabolismo , Fenilalanina/metabolismo , Ácido Chiquímico/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
7.
Appl Microbiol Biotechnol ; 108(1): 90, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38204127

RESUMO

Aspergillus oryzae PrtR is an ortholog of the transcription factor PrtT, which positively regulates the transcription of extracellular peptidase genes in Aspergillus niger and Aspergillus fumigatus. To identify the genes under the control of PrtR and elucidate its regulatory mechanism in A. oryzae, prtR gene disruption mutants were generated. The control strain clearly showed a halo on media containing skim milk as the nitrogen source, whereas the ΔprtR strain formed a smaller halo. Measurement of acid peptidase activity revealed that approximately 84% of acidic endopeptidase and 86% of carboxypeptidase activities are positively regulated by PrtR. As the transcription of the prtR gene varied depending on culture conditions, especially with or without a protein substrate, it was considered that its transcription would be regulated in response to a nitrogen source. In addition, contrary to previous expectations, PrtR was found to act both in promoting and repressing the transcription of extracellular peptidase genes. The mode of regulation varied from gene to gene. Some genes were regulated in the same manner in both liquid and solid cultures, whereas others were regulated in different ways depending on the culture conditions. Furthermore, PrtR has been suggested to regulate the transcription of peptidase genes that are closely associated with other transcription factors. KEY POINTS: • Almost all peptidase genes in Aspergillus oryzae are positively regulated by PrtR • However, several genes are regulated negatively by PrtR • PrtR optimizes transcription of peptidase genes in response to culture conditions.


Assuntos
Aspergillus oryzae , Aspergillus oryzae/genética , Aspergillus fumigatus , Aspergillus niger , Endopeptidases , Nitrogênio , Fatores de Transcrição/genética
8.
Arch Phys Med Rehabil ; 105(2): 227-234, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37714508

RESUMO

OBJECTIVE: To investigate the effect of a wearable integrated volitional control electrical stimulation (WIVES) device that has been developed as more compact and simpler to use in daily life compared with conventional integrated volitional control electrical stimulation (IVES) devices. DESIGN: Randomized controlled non-inferiority trial. SETTING: Convalescent rehabilitation ward. PARTICIPANTS: Patients with paresis of the upper extremity (UE) after early subacute stroke (N=20). INTERVENTIONS: Eligible patients were randomized to receive IVES treatment or WIVES treatment for 8 hours per day for 28 days in daily living, in addition to standard rehabilitation treatment. In both groups, the extensor digitorum communis on the affected side was the target muscle for stimulation. MAIN OUTCOME MEASURE: Primary outcomes were assessed with Fugl-Meyer Assessment of the UE (FMA-UE) before and after treatment. Non-inferiority was determined with a specified margin of non-inferiority. RESULTS: Twenty patients completed the trial (IVES group: n=10, WIVES group: n=10). FMA-UE improved in both groups. The mean change in FMA-UE was 4.7 for the IVES group and 6.0 for the WIVES group (P>.05, 95% confidence interval: -6.73 to 4.13). The mean difference between the groups was 1.3, and the upper 95% confidence interval did not exceed the non-inferiority margin. CONCLUSION: The effectiveness of WIVES treatment is non-inferior to that of IVES treatment. As a portable device, IVES may facilitate the use of affected upper extremities in daily living and may help improve paresis of the UE.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Estimulação Elétrica , Paresia/etiologia , Paresia/reabilitação , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/complicações , Resultado do Tratamento , Extremidade Superior
9.
J Biol Chem ; 298(8): 102122, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35697072

RESUMO

Aminotransferases (ATs) are pyridoxal 5'-phosphate-dependent enzymes that catalyze the transamination reactions between amino acid donor and keto acid acceptor substrates. Modern AT enzymes constitute ∼2% of all classified enzymatic activities, play central roles in nitrogen metabolism, and generate multitude of primary and secondary metabolites. ATs likely diverged into four distinct AT classes before the appearance of the last universal common ancestor and further expanded to a large and diverse enzyme family. Although the AT family underwent an extensive functional specialization, many AT enzymes retained considerable substrate promiscuity and multifunctionality because of their inherent mechanistic, structural, and functional constraints. This review summarizes the evolutionary history, diverse metabolic roles, reaction mechanisms, and structure-function relationships of the AT family enzymes, with a special emphasis on their substrate promiscuity and multifunctionality. Comprehensive characterization of AT substrate specificity is still needed to reveal their true metabolic functions in interconnecting various branches of the nitrogen metabolic network in different organisms.


Assuntos
Fosfato de Piridoxal , Transaminases , Evolução Biológica , Nitrogênio/metabolismo , Fosfato de Piridoxal/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Transaminases/metabolismo
10.
Plant J ; 111(5): 1486-1500, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35819300

RESUMO

Quantification of reaction fluxes of metabolic networks can help us understand how the integration of different metabolic pathways determines cellular functions. Yet, intracellular fluxes cannot be measured directly but are estimated with metabolic flux analysis (MFA), which relies on the patterns of isotope labeling of metabolites in the network. The application of MFA also requires a stoichiometric model with atom mappings that are currently not available for the majority of large-scale metabolic network models, particularly of plants. While automated approaches such as the Reaction Decoder Toolkit (RDT) can produce atom mappings for individual reactions, tracing the flow of individual atoms of the entire reactions across a metabolic model remains challenging. Here we establish an automated workflow to obtain reliable atom mappings for large-scale metabolic models by refining the outcome of RDT, and apply the workflow to metabolic models of Arabidopsis thaliana. We demonstrate the accuracy of RDT through a comparative analysis with atom mappings from a large database of biochemical reactions, MetaCyc. We further show the utility of our automated workflow by simulating 15 N isotope enrichment and identifying nitrogen (N)-containing metabolites which show enrichment patterns that are informative for flux estimation in future 15 N-MFA studies of A. thaliana. The automated workflow established in this study can be readily expanded to other species for which metabolic models have been established and the resulting atom mappings will facilitate MFA and graph-theoretic structural analyses with large-scale metabolic networks.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Isótopos de Carbono/metabolismo , Marcação por Isótopo/métodos , Análise do Fluxo Metabólico , Redes e Vias Metabólicas , Modelos Biológicos , Fluxo de Trabalho
11.
Plant J ; 109(4): 844-855, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34807484

RESUMO

l-Tyrosine is an essential amino acid for protein synthesis and is also used in plants to synthesize diverse natural products. Plants primarily synthesize tyrosine via TyrA arogenate dehydrogenase (TyrAa or ADH), which are typically strongly feedback inhibited by tyrosine. However, two plant lineages, Fabaceae (legumes) and Caryophyllales, have TyrA enzymes that exhibit relaxed sensitivity to tyrosine inhibition and are associated with elevated production of tyrosine-derived compounds, such as betalain pigments uniquely produced in core Caryophyllales. Although we previously showed that a single D222N substitution is primarily responsible for the deregulation of legume TyrAs, it is unknown when and how the deregulated Caryophyllales TyrA emerged. Here, through phylogeny-guided TyrA structure-function analysis, we found that functionally deregulated TyrAs evolved early in the core Caryophyllales before the origin of betalains, where the E208D amino acid substitution in the active site, which is at a different and opposite location from D222N found in legume TyrAs, played a key role in the TyrA functionalization. Unlike legumes, however, additional substitutions on non-active site residues further contributed to the deregulation of TyrAs in Caryophyllales. The introduction of a mutation analogous to E208D partially deregulated tyrosine-sensitive TyrAs, such as Arabidopsis TyrA2 (AtTyrA2). Moreover, the combined introduction of D222N and E208D additively deregulated AtTyrA2, for which the expression in Nicotiana benthamiana led to highly elevated accumulation of tyrosine in planta. The present study demonstrates that phylogeny-guided characterization of key residues underlying primary metabolic innovations can provide powerful tools to boost the production of essential plant natural products.


Assuntos
Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutagênese , Plantas/genética , Plantas/metabolismo , Tirosina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Betalaínas/biossíntese , Caryophyllales/genética , Caryophyllales/metabolismo , Fabaceae , Complexos Multienzimáticos/classificação , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , Prefenato Desidrogenase/genética , Prefenato Desidrogenase/metabolismo
12.
Plant J ; 107(5): 1283-1298, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34250670

RESUMO

Cadaverine, a polyamine, has been linked to modification of root growth architecture and response to environmental stresses in plants. However, the molecular mechanisms that govern the regulation of root growth by cadaverine are largely unexplored. Here we conducted a forward genetic screen and isolated a mutation, cadaverine hypersensitive 3 (cdh3), which resulted in increased root-growth sensitivity to cadaverine, but not other polyamines. This mutation affects the BIO3-BIO1 biotin biosynthesis gene. Exogenous supply of biotin and a pathway intermediate downstream of BIO1, 7,8-diaminopelargonic acid, suppressed this cadaverine sensitivity phenotype. An in vitro enzyme assay showed cadaverine inhibits the BIO3-BIO1 activity. Furthermore, cadaverine-treated seedlings displayed reduced biotinylation of Biotin Carboxyl Carrier Protein 1 of the acetyl-coenzyme A carboxylase complex involved in de novo fatty acid biosynthesis, resulting in decreased accumulation of triacylglycerides. Taken together, these results revealed an unexpected role of cadaverine in the regulation of biotin biosynthesis, which leads to modulation of primary root growth of plants.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Biotina/biossíntese , Cadaverina/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Transaminases/metabolismo , Acetil-CoA Carboxilase/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Biotinilação , Carbono-Nitrogênio Ligases/genética , Ácido Graxo Sintase Tipo II/genética , Ácido Graxo Sintase Tipo II/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transaminases/genética
13.
Plant J ; 108(3): 737-751, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34403557

RESUMO

Out of the three aromatic amino acids, the highest flux in plants is directed towards phenylalanine, which is utilized to synthesize proteins and thousands of phenolic metabolites contributing to plant fitness. Phenylalanine is produced predominantly in plastids via the shikimate pathway and subsequent arogenate pathway, both of which are subject to complex transcriptional and post-transcriptional regulation. Previously, it was shown that allosteric feedback inhibition of arogenate dehydratase (ADT), which catalyzes the final step of the arogenate pathway, restricts flux through phenylalanine biosynthesis. Here, we show that in petunia (Petunia hybrida) flowers, which typically produce high phenylalanine levels, ADT regulation is relaxed, but not eliminated. Moderate expression of a feedback-insensitive ADT increased flux towards phenylalanine, while high overexpression paradoxically reduced phenylalanine formation. This reduction could be partially, but not fully, recovered by bypassing other known metabolic flux control points in the aromatic amino acid network. Using comparative transcriptomics, reverse genetics, and metabolic flux analysis, we discovered that transcriptional regulation of the d-ribulose-5-phosphate 3-epimerase gene in the pentose phosphate pathway controls flux into the shikimate pathway. Taken together, our findings reveal that regulation within and upstream of the shikimate pathway shares control over phenylalanine biosynthesis in the plant cell.


Assuntos
Hidroliases/genética , Petunia/genética , Petunia/metabolismo , Fenilalanina/biossíntese , Proteínas de Plantas/genética , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Hidroliases/metabolismo , Mutação , Fenilalanina/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/genética , Plastídeos/metabolismo , Metabolismo Secundário/genética , Ácido Chiquímico/metabolismo
14.
Plant Physiol ; 185(3): 857-875, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793871

RESUMO

The emergence of type III polyketide synthases (PKSs) was a prerequisite for the conquest of land by the green lineage. Within the PKS superfamily, chalcone synthases (CHSs) provide the entry point reaction to the flavonoid pathway, while LESS ADHESIVE POLLEN 5 and 6 (LAP5/6) provide constituents of the outer exine pollen wall. To study the deep evolutionary history of this key family, we conducted phylogenomic synteny network and phylogenetic analyses of whole-genome data from 126 species spanning the green lineage including Arabidopsis thaliana, tomato (Solanum lycopersicum), and maize (Zea mays). This study thereby combined study of genomic location and context with changes in gene sequences. We found that the two major clades, CHS and LAP5/6 homologs, evolved early by a segmental duplication event prior to the divergence of Bryophytes and Tracheophytes. We propose that the macroevolution of the type III PKS superfamily is governed by whole-genome duplications and triplications. The combined phylogenetic and synteny analyses in this study provide insights into changes in the genomic location and context that are retained for a longer time scale with more recent functional divergence captured by gene sequence alterations.


Assuntos
Aciltransferases/metabolismo , Arabidopsis/metabolismo , Policetídeo Sintases/metabolismo , Solanum lycopersicum/metabolismo , Zea mays/metabolismo , Aciltransferases/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Filogenia , Policetídeo Sintases/genética , Zea mays/genética
15.
Biosci Biotechnol Biochem ; 86(3): 413-422, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35025981

RESUMO

Aspergillus oryzae RIB40 has 11 aspartic endopeptidase genes. We searched for milk-clotting enzymes based on the homology of the deduced amino acid sequence with chymosins. As a result, we identified a milk-clotting enzyme in A. oryzae. We expected other Aspergillus species to have a homologous enzyme with milk-clotting activity, and we found the most homologous aspartic endopeptidase from A. luchuensis had milk-clotting activity. Surprisingly, 2 enzymes were considered as vacuole enzymes according to a study on A. niger proteases. The 2 enzymes from A. oryzae and A. luchuensis cleaved a peptide between the 105Phe-106Met bond in κ-casein, similar to chymosin. Although both enzymes showed proteolytic activity using casein as a substrate, the optimum pH values for milk-clotting and proteolytic activities were different. Furthermore, the substrate specificities were highly restricted. Therefore, we expected that the Japanese traditional fermentation agent, koji, could be used as an enzyme source for cheese production.


Assuntos
Aspergillus oryzae
16.
Biomacromolecules ; 22(3): 1186-1196, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33378181

RESUMO

Controlling the particle structure of tumor-targeting nanomedicines in vivo remains challenging but must be achieved to control their in vivo fate and functions. Molecular bottlebrushes (MBs), where brush side chains are densely grafted from a main chain, have recently received attention as building blocks of polymer-based prodrugs because their rigid structure would be expected to demonstrate high structural stability in vivo. Here, we synthesized a poly(methacryloyloxyethyl phosphorylcholine) (pMPC)-grafted molecular bottlebrush (PCMB) conjugated with a cancer drug, doxorubicin (DOX), via an acid-cleavable hydrazone bond. A pMPC-based linear polymer (LP) conjugated with DOX was also prepared for comparison. We confirmed the lack of structural transition in the PCMB between before and after conjugation with DOX using small-angle light and X-ray scattering techniques, whereas the structure of LP was significantly influenced by DOX conjugation and transformed from a random-coil structure to a large agglomerate via hydrophobic interactions among DOXs. Although PCMB-DOX and LP-DOX showed comparable tissue permeability, pharmacokinetics, and ability to accumulate in tumor tissues, the antitumor efficacy of PCMB-DOX was better than that of LP-DOX. This was presumably due to the formation of LP-DOX agglomerates. The diffusion of cleaved DOX would be restricted in the hydrophobic core of the agglomerate, resulting in the DOX release at the tumor site being compromised. In contrast to LP-DOX, DOX release from PCMB-DOX was not compromised after accumulation in tumor tissues because it did not form such an agglomerate, resulting in the strong antitumor effect. We have demonstrated the potential of MBs as building blocks of drug carriers and believe that these findings can contribute to the design of polymer-based nanomedicines.


Assuntos
Antineoplásicos , Pró-Fármacos , Linhagem Celular Tumoral , Doxorrubicina , Portadores de Fármacos , Fosforilcolina , Polímeros
17.
J Biol Chem ; 294(45): 16549-16566, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31558606

RESUMO

Plants produce numerous natural products that are essential to both plant and human physiology. Recent identification of genes and enzymes involved in their biosynthesis now provides exciting opportunities to reconstruct plant natural product pathways in heterologous systems through synthetic biology. The use of plant chassis, although still in infancy, can take advantage of plant cells' inherent capacity to synthesize and store various phytochemicals. Also, large-scale plant biomass production systems, driven by photosynthetic energy production and carbon fixation, could be harnessed for industrial-scale production of natural products. However, little is known about which plants could serve as ideal hosts and how to optimize plant primary metabolism to efficiently provide precursors for the synthesis of desirable downstream natural products or specialized (secondary) metabolites. Although primary metabolism is generally assumed to be conserved, unlike the highly-diversified specialized metabolism, primary metabolic pathways and enzymes can differ between microbes and plants and also among different plants, especially at the interface between primary and specialized metabolisms. This review highlights examples of the diversity in plant primary metabolism and discusses how we can utilize these variations in plant synthetic biology. I propose that understanding the evolutionary, biochemical, genetic, and molecular bases of primary metabolic diversity could provide rational strategies for identifying suitable plant hosts and for further optimizing primary metabolism for sizable production of natural and bio-based products in plants.


Assuntos
Evolução Biológica , Plantas/metabolismo , Aminoácidos/biossíntese , Produtos Biológicos/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas , Ácido Mevalônico/metabolismo , Fenilalanina/biossíntese , Proteínas de Plantas/metabolismo , Plantas/genética , Especificidade por Substrato
18.
J Biol Chem ; 294(10): 3563-3576, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30630953

RESUMO

Plants produce various l-tyrosine (Tyr)-derived compounds that are critical for plant adaptation and have pharmaceutical or nutritional importance for human health. Tyrosine aminotransferases (TATs) catalyze the reversible reaction between Tyr and 4-hydroxyphenylpyruvate (HPP), representing the entry point in plants for both biosynthesis of various natural products and Tyr degradation in the recycling of energy and nutrients. To better understand the roles of TATs and how Tyr is metabolized in planta, here we characterized single and double loss-of-function mutants of TAT1 (At5g53970) and TAT2 (At5g36160) in the model plant Arabidopsis thaliana As reported previously, tat1 mutants exhibited elevated and decreased levels of Tyr and tocopherols, respectively. The tat2 mutation alone had no impact on Tyr and tocopherol levels, but a tat1 tat2 double mutant had increased Tyr accumulation and decreased tocopherol levels under high-light stress compared with the tat1 mutant. Relative to WT and the tat2 mutant, the tat1 mutant displayed increased vulnerability to continuous dark treatment, associated with an early drop in respiratory activity and sucrose depletion. During isotope-labeled Tyr feeding in the dark, we observed that the tat1 mutant exhibits much slower 13C incorporation into tocopherols, fumarate, and other tricarboxylic acid (TCA) cycle intermediates than WT and the tat2 mutant. These results indicate that TAT1 and TAT2 function together in tocopherol biosynthesis, with TAT2 having a lesser role, and that TAT1 plays the major role in Tyr degradation in planta Our study also highlights the importance of Tyr degradation under carbon starvation conditions during dark-induced senescence in plants.


Assuntos
Arabidopsis/metabolismo , Tirosina Transaminase/metabolismo , Tirosina/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Arabidopsis/genética , Carbono/metabolismo , Ciclo do Ácido Cítrico , Citosol/metabolismo , Metabolismo Energético , Mutação , Tocoferóis/metabolismo , Tirosina Transaminase/genética
19.
Plant J ; 97(5): 901-922, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30457178

RESUMO

l-Tyrosine is an essential aromatic amino acid required for the synthesis of proteins and a diverse array of plant natural products; however, little is known on how the levels of tyrosine are controlled in planta and linked to overall growth and development. Most plants synthesize tyrosine by TyrA arogenate dehydrogenases, which are strongly feedback-inhibited by tyrosine and encoded by TyrA1 and TyrA2 genes in Arabidopsis thaliana. While TyrA enzymes have been extensively characterized at biochemical levels, their in planta functions remain uncertain. Here we found that TyrA1 suppression reduces seed yield due to impaired anther dehiscence, whereas TyrA2 knockout leads to slow growth with reticulate leaves. The tyra2 mutant phenotypes were exacerbated by TyrA1 suppression and rescued by the expression of TyrA2, TyrA1 or tyrosine feeding. Low-light conditions synchronized the tyra2 and wild-type growth, and ameliorated the tyra2 leaf reticulation. After shifting to normal light, tyra2 transiently decreased tyrosine and subsequently increased aspartate before the appearance of the leaf phenotypes. Overexpression of the deregulated TyrA enzymes led to hyper-accumulation of tyrosine, which was also accompanied by elevated aspartate and reticulate leaves. These results revealed that TyrA1 and TyrA2 have distinct and overlapping functions in flower and leaf development, respectively, and that imbalance of tyrosine, caused by altered TyrA activity and regulation, impacts growth and development of Arabidopsis. The findings provide critical bases for improving the production of tyrosine and its derived natural products, and further elucidating the coordinated metabolic and physiological processes to maintain tyrosine levels in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Oxirredutases/metabolismo , Tirosina/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação para Baixo , Técnicas de Inativação de Genes , Homeostase , Oxirredutases/genética , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Prefenato Desidrogenase/genética , Prefenato Desidrogenase/metabolismo , Regulação para Cima
20.
BMC Gastroenterol ; 20(1): 427, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317473

RESUMO

BACKGROUND: Chronic liver disease (CLD) is often complicated by severe thrombocytopenia (platelet count < 50,000/µL). Platelet transfusion has been a gold standard for increasing the platelet count to prevent hemorrhagic events in such patients. Lusutrombopag, a thrombopoietin receptor agonist, can increase the platelet count in such patients when invasive procedures are scheduled. Former studies on lusutrombopag included patients with a platelet count of > 50,000/µL at baseline: the proportions of patients who did not require platelet transfusion were 84-96%, which might be overestimated. METHODS: The efficacy and safety of lusutrombopag were retrospectively investigated in CLD patients with platelet count of < 50,000/µL, a criterion for platelet transfusion, in real-world settings. We examined the proportion of patients who did not require platelet transfusion in 31 CLD patients, which exceeded a minimum required sample size (21 patients) calculated by 80% power at a significance level of 5%. Lusutrombopag, 3 mg once daily, was administered 8-18 days before scheduled invasive procedures. RESULTS: Among 31 patients who received lusutrombopag, 23 patients (74.2%) patients showed a platelet count of ≥ 50,000/µL (Group A) and did not require platelet transfusion. The remaining 8 patients (25.8%) did not reached platelet ≥ 50,000/µL (Group B). The means of platelet increase were 38,000/µL and 12,000/µL in groups A and B, respectively. A low platelet count at baseline was a characteristic of patients in group B. Among 13 patients who repeatedly used lusutrombopag, lusutrombopag significantly increased the platelet count as the initial treatment. When all repeated uses of lusutrombopag were counted among these 13 patients, platelet transfusion was not required in 82.1% (23/28) of treatments. Although one patient showed portal thrombosis after lusutrombopag treatment, the thrombosis was disappeared by anticoagulant treatment for 35 days. The degree of platelet increase with lusutrombopag was larger than that in their previous platelet transfusion. CONCLUSIONS: The proportion of patients who did not require platelet transfusion was 74.2%, which is smaller than that in former studies which included CLD patients with a platelet count of > 50,000/µL. However, lusutrombopag is effective and safe for CLD patients with a platelet count of < 50,000/µL.


Assuntos
Hepatopatias , Trombocitopenia , Cinamatos , Humanos , Hepatopatias/complicações , Hepatopatias/terapia , Receptores de Trombopoetina , Estudos Retrospectivos , Tiazóis , Trombocitopenia/complicações , Trombocitopenia/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA