Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Bot ; 125(3): 521-532, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-31768517

RESUMO

BACKGROUND AND AIMS: Domatia are plant structures within which organisms reside. Callicarpa saccata (Lamiaceae) is the sole myrmecophyte, or 'ant plant', that develops foliar (leaf-borne) myrmeco-domatia in this genus. In this work we examined domatium development in C. saccata to understand the developmental processes behind pouch-like domatia. METHODS: Scanning electron microscopy, sectioning and microcomputed tomography were carried out to compare the leaves of C. saccata with those of the closely related but domatia-less myrmecophyte Callicarpa subaequalis, both under cultivation without ants. KEY RESULTS: Callicarpa saccata domatia are formed as a result of excess cell proliferation at the blade/petiole junctions of leaf primordia. Blade/petiole junctions are important meristematic sites in simple leaf organogenesis. We also found that the mesophyll tissue of domatia does not clearly differentiate into palisade and spongy layers. CONCLUSIONS: Rather than curling of the leaf margins, a perturbation of the normal functioning of the blade/petiole junction results in the formation of domatium tissue. Excess cell proliferation warps the shape of the blade and disturbs the development of the proximal-distal axis. This process leads to the generation of distinct structures that facilitate interaction between C. saccata and ants.


Assuntos
Formigas , Callicarpa , Animais , Folhas de Planta , Simbiose , Microtomografia por Raio-X
2.
J Morphol ; 279(6): 809-827, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29537107

RESUMO

Cochlear morphology has been regarded as one of the key traits to understand the origin and evolution of echolocation in bats, given its functionality and performance for receiving echolocation sonar. While numerous researchers have compared adult-stage morphology, few have studied the prenatal development of the cochlea. Here, we provide the first detailed three-dimensional description of the prenatal cranial development in bats, using Rhinolophus thomasi as a model, with particular interest to the petrosal which houses the cochlea. Results revealed that among all cranial bones the onset of the ossification of the petrosal is earlier in R. thomasi when compared to other reported mammals. Generally, the cochlea reaches adult size and shape before or around birth in placental mammals including bats, but we found that its shape and size growths continue until maturity in Rhinolophus species. The relationship of cochlear size and skull size is maintained constant throughout the postnatal ontogeny to adulthood in Rhinolophus, a pattern previously reported neither in any other bats nor other mammals. The peculiar developmental pattern in Rhinolophus possibly allows them to form their characteristically large cochlea and facilitate their distinctive echolocation behavior. A recent study reported that non-echolocating Pteropodidae shares a similar prenatal cochlear size to laryngeal echolocating bats. The apparent resemblance of fetal cochlear size was proposed to be a vestigial signal of large cochlear size in the last common ancestor of bats and thus as supporting evidence for the single origin of laryngeal echolocation. However, results from the present observations suggest that limited aspects of the cochlear development were captured in this previous investigation and that the resulting interpretations may be questionable. We point out that diversity and patterns of cochlear development among bats are still not resolved, and the controversy on the origins of laryngeal echolocation is still open to discussion.


Assuntos
Quirópteros/embriologia , Crânio/embriologia , Animais , Desenvolvimento Ósseo , Cóclea/embriologia , Ecolocação , Feminino , Gravidez
3.
Zookeys ; (663): 1-19, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769615

RESUMO

The first morphological observation of a euryalid brittle star, Asteronyx loveni, using non-destructive X-ray micro-computed tomography (µCT) was performed. The body of euryalids is covered by thick skin, and it is very difficult to observe the ossicles without dissolving the skin. Computed tomography with micrometer resolution (approximately 4.5-15.4 µm) was used to construct 3D images of skeletal ossicles and soft tissues in the ophiuroid's body. Shape and positional arrangement of taxonomically important ossicles were clearly observed without any damage to the body. Detailed pathways inside the vertebral ossicles, lateral arm plates, and arm spines for passage of nerves and water vascular structures were observed. Inter-vertebral muscles were also observed. Forms and 3D arrangements of many important taxonomical characters of the euryalids were scrutinized by µCT in high enough resolution for taxonomic description of ophiuroids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA